स्थिति (कार्यात्मक विश्लेषण): Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
[[कार्यात्मक विश्लेषण]] में, एक [[ऑपरेटर सिस्टम]] की स्थिति [[ऑपरेटर मानदंड]] का एक [[सकारात्मक रैखिक कार्यात्मक]] है। कार्यात्मक विश्लेषण सामान्यीकरण में राज्य क्वांटम यांत्रिकी में [[घनत्व मैट्रिक्स]] की धारणा है, जो क्वांटम राज्यों का प्रतिनिधित्व करते हैं, दोनों {{section link|quantum state|Mixed states|pure states|nopage=y}}. घनत्व मैट्रिसेस बदले में क्वांटम स्थिति को सामान्य करते हैं, जो केवल शुद्ध अवस्थाओं का प्रतिनिधित्व करते हैं। एम के लिए एक [[सी * - बीजगणित]] ए में पहचान के साथ एक ऑपरेटर सिस्टम, एम के सभी राज्यों का सेट, जिसे कभी-कभी एस (एम) द्वारा चिह्नित किया जाता है, उत्तल, कमजोर - * बनच दोहरी अंतरिक्ष एम में बंद होता है<sup>*</सुप>. इस प्रकार कमजोर-* टोपोलॉजी के साथ M की सभी अवस्थाओं का समुच्चय एक कॉम्पैक्ट हौसडॉर्फ स्पेस बनाता है, जिसे 'M का स्टेट स्पेस' कहा जाता है।
[[कार्यात्मक विश्लेषण|फलनिक विश्लेषण]] में, प्रचालक प्रणाली की स्थिति [[ऑपरेटर मानदंड]] का एक [[सकारात्मक रैखिक कार्यात्मक|धनात्मक रैखिक फलन]] है। फलनिक विश्लेषण सामान्यीकरण में स्थिति क्वांटम यांत्रिकी में [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] की धारणा है, जो दोनों क्वांटम अवस्थाओं {{section link|quantum state|मिश्र अवस्था |शुद्ध अवस्था |nopage=y}} का प्रतिनिधित्व करते हैं। घनत्व आव्यूह इसके विरोध में क्वांटम अवस्था को सामान्य करते हैं, जो केवल शुद्ध अवस्थाओं का प्रतिनिधित्व करते हैं। एम के लिए एक [[सी * - बीजगणित]] ए में तत्समक के साथ एकप्रचालक प्रणाली, एम के सभी अवस्थाओं का सम्मुचय, जिसे कभी-कभी एस (एम) द्वारा चिह्नित किया जाता है, उत्तल, मंद - * बैनक दुगनी स्थिति एम में बंद होता है<sup>*</सुप>. इस प्रकार मंद-* संस्थिति के साथ एम् की सभी अवस्थाओं का समुच्चय एक सघन हौसडॉर्फ स्थल बनाता है, जिसे 'एम् का अवस्था स्थान' कहा जाता है।


क्वांटम यांत्रिकी के C*-बीजगणितीय सूत्रीकरण में, इस पिछले अर्थ में राज्य भौतिक अवस्थाओं के अनुरूप होते हैं, अर्थात भौतिक अवलोकनों (C*-बीजगणित के स्व-संलग्न तत्व) से उनके अपेक्षित माप परिणाम (वास्तविक संख्या) से मैपिंग।
क्वांटम यांत्रिकी के सी*-बीजगणितीय सूत्रीकरण में, इस पिछले अर्थ में अवस्था भौतिक अवस्थाओं के अनुरूप होते हैं, अर्थात भौतिक अवलोकनों (सी*-बीजगणित के स्व-संलग्न अवयव) से उनके अपेक्षित माप परिणाम (वास्तविक संख्या) से मापा जाता हैं।


== जॉर्डन अपघटन ==
== जॉर्डन अपघटन ==

Revision as of 11:32, 20 June 2023

फलनिक विश्लेषण में, प्रचालक प्रणाली की स्थिति ऑपरेटर मानदंड का एक धनात्मक रैखिक फलन है। फलनिक विश्लेषण सामान्यीकरण में स्थिति क्वांटम यांत्रिकी में घनत्व आव्यूह की धारणा है, जो दोनों क्वांटम अवस्थाओं §§ मिश्र अवस्था​ and शुद्ध अवस्था का प्रतिनिधित्व करते हैं। घनत्व आव्यूह इसके विरोध में क्वांटम अवस्था को सामान्य करते हैं, जो केवल शुद्ध अवस्थाओं का प्रतिनिधित्व करते हैं। एम के लिए एक सी * - बीजगणित ए में तत्समक के साथ एकप्रचालक प्रणाली, एम के सभी अवस्थाओं का सम्मुचय, जिसे कभी-कभी एस (एम) द्वारा चिह्नित किया जाता है, उत्तल, मंद - * बैनक दुगनी स्थिति एम में बंद होता है*</सुप>. इस प्रकार मंद-* संस्थिति के साथ एम् की सभी अवस्थाओं का समुच्चय एक सघन हौसडॉर्फ स्थल बनाता है, जिसे 'एम् का अवस्था स्थान' कहा जाता है।

क्वांटम यांत्रिकी के सी*-बीजगणितीय सूत्रीकरण में, इस पिछले अर्थ में अवस्था भौतिक अवस्थाओं के अनुरूप होते हैं, अर्थात भौतिक अवलोकनों (सी*-बीजगणित के स्व-संलग्न अवयव) से उनके अपेक्षित माप परिणाम (वास्तविक संख्या) से मापा जाता हैं।

जॉर्डन अपघटन

राज्यों को संभाव्यता उपायों के गैर-अनुवर्ती सामान्यीकरण के रूप में देखा जा सकता है। गेलफैंड निरूपण के अनुसार, प्रत्येक क्रमविनिमेय C*-बीजगणित A, C के रूप का है0(एक्स) कुछ स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ एक्स के लिए। इस मामले में, एस (ए) में एक्स पर सकारात्मक रेडॉन उपाय शामिल हैं, और § pure states X पर मूल्यांकन कार्य हैं।

अधिक आम तौर पर, जीएनएस निर्माण से पता चलता है कि प्रत्येक राज्य एक उपयुक्त प्रतिनिधित्व चुनने के बाद, एक राज्य (कार्यात्मक विश्लेषण)#वेक्टर राज्य है।

सी *-बीजगणित ए पर एक परिबद्ध रैखिक कार्यात्मक को 'स्व-संबद्ध' कहा जाता है यदि यह ए के स्व-संलग्न तत्वों पर वास्तविक मूल्य है। स्व-संलग्न कार्यात्मक हस्ताक्षरित उपायों के गैर-अनुरूप हैं।

माप सिद्धांत में हैन अपघटन प्रमेय का कहना है कि प्रत्येक हस्ताक्षरित उपाय को अलग-अलग सेटों पर समर्थित दो सकारात्मक उपायों के अंतर के रूप में व्यक्त किया जा सकता है। इसे गैर-अनुक्रमिक सेटिंग तक बढ़ाया जा सकता है।

Theorem — Every self-adjoint f in A* can be written as f = f+f where f+ and f are positive functionals and ||f|| = ||f+|| + ||f||.

Proof

A proof can be sketched as follows: Let Ω be the weak*-compact set of positive linear functionals on A with norm ≤ 1, and C(Ω) be the continuous functions on Ω. A can be viewed as a closed linear subspace of C(Ω) (this is Kadison's function representation). By Hahn–Banach, f extends to a g in C(Ω)* with

उपरोक्त अपघटन से यह पता चलता है कि ए * राज्यों की रैखिक अवधि है।

राज्यों के कुछ महत्वपूर्ण वर्ग

शुद्ध राज्य

केरेन-मिलमैन प्रमेय द्वारा, एम के राज्य स्थान में चरम बिंदु हैं[clarification needed]. राज्य स्थान के चरम बिंदुओं को शुद्ध राज्य कहा जाता है और अन्य राज्यों को मिश्रित राज्यों के रूप में जाना जाता है।

वेक्टर राज्य

हिल्बर्ट स्पेस एच और एच में एक वेक्टर एक्स के लिए, समीकरण ωx(ए) := ⟨Ax,x⟩ (ए के लिए बी(एच) में), बी(एच) पर एक सकारात्मक रैखिक कार्यात्मक परिभाषित करता है। चूँकि ωx(1)=||x||2, ओहx एक अवस्था है यदि ||x||=1. यदि A, B(H) का C*-सबलजेब्रा है और A में M एक ऑपरेटर सिस्टम है, तो ω का प्रतिबंधx एम से एम पर एक सकारात्मक रैखिक कार्यात्मक परिभाषित करता है। एम के राज्य जो इस तरह से उत्पन्न होते हैं, एच में यूनिट वैक्टर से, एम के 'वेक्टर राज्य' कहलाते हैं।

वफादार राज्य

एक राज्य विश्वासयोग्य है, यदि यह सकारात्मक तत्वों पर आधारित है, अर्थात, तात्पर्य .

सामान्य स्थिति

एक राज्य सामान्य कहा जाता है, प्रत्येक मोनोटोन के लिए iff, बढ़ता नेट (गणित) कम से कम ऊपरी सीमा वाले ऑपरेटरों की , में विलीन हो जाता है .

ट्रेशियल स्टेट्स

एक ट्रेसियल राज्य एक राज्य है ऐसा है कि

किसी भी वियोज्य सी*-बीजगणित के लिए, ट्रेसियल राज्यों का सेट एक चॉकेट सिद्धांत है।

फैक्टोरियल स्टेट्स

C*-बीजगणित A की एक फैक्टोरियल अवस्था एक ऐसी अवस्था है, जिसमें A के संबंधित GNS प्रतिनिधित्व का कम्यूटेंट एक वॉन न्यूमैन बीजगणित#Factors है।

यह भी देखें

  • क्वांटम अवस्था
  • गेलफैंड-नैमार्क-सेगल निर्माण
  • क्वांटम यांत्रिकी
    • क्वांटम स्थिति
    • घनत्व मैट्रिक्स

संदर्भ

  • Lin, H. (2001), An Introduction to the Classification of Amenable C*-algebras, World Scientific