संकल्प वृद्धि प्रौद्योगिकियां: Difference between revisions
Line 19: | Line 19: | ||
विभिन्न संकल्प वृद्धि प्रणालियों में अंतर्निहित मूल अवधारणा दूसरों में विवर्तन को ऑफसेट करने के लिए कुछ स्थानों में विवर्तन का रचनात्मक उपयोग है। उदाहरण के लिए, जब प्रकाश मास्क पर एक रेखा के चारों ओर विवर्तित होता है तो यह चमकीली और गहरी रेखाओं, या "बैंड" की एक श्रृंखला उत्पन्न करेगा। जो वांछित तीव्र पैटर्न को फैलाएगा। इसे ऑफसेट करने के लिए, एक दूसरा पैटर्न जमा किया जाता है जिसका विवर्तन पैटर्न वांछित विशेषताओं के साथ ओवरलैप होता है, और जिनके बैंड विपरीत प्रभाव उत्पन्न करने के लिए मूल पैटर्न को ओवरलैप करने के लिए स्थित हैं - प्रकाश पर अंधेरा या जो इसके विपरीत भी संभव है। इस प्रकार की कई विशेषताएं जोड़ी जाती हैं, और संयुक्त पैटर्न मूल सुविधा उत्पन्न करता है। आमतौर पर, मास्क पर ये अतिरिक्त सुविधाएँ वांछित विशेषता के समानांतर पड़ी अतिरिक्त रेखाओं की तरह दिखती हैं। | विभिन्न संकल्प वृद्धि प्रणालियों में अंतर्निहित मूल अवधारणा दूसरों में विवर्तन को ऑफसेट करने के लिए कुछ स्थानों में विवर्तन का रचनात्मक उपयोग है। उदाहरण के लिए, जब प्रकाश मास्क पर एक रेखा के चारों ओर विवर्तित होता है तो यह चमकीली और गहरी रेखाओं, या "बैंड" की एक श्रृंखला उत्पन्न करेगा। जो वांछित तीव्र पैटर्न को फैलाएगा। इसे ऑफसेट करने के लिए, एक दूसरा पैटर्न जमा किया जाता है जिसका विवर्तन पैटर्न वांछित विशेषताओं के साथ ओवरलैप होता है, और जिनके बैंड विपरीत प्रभाव उत्पन्न करने के लिए मूल पैटर्न को ओवरलैप करने के लिए स्थित हैं - प्रकाश पर अंधेरा या जो इसके विपरीत भी संभव है। इस प्रकार की कई विशेषताएं जोड़ी जाती हैं, और संयुक्त पैटर्न मूल सुविधा उत्पन्न करता है। आमतौर पर, मास्क पर ये अतिरिक्त सुविधाएँ वांछित विशेषता के समानांतर पड़ी अतिरिक्त रेखाओं की तरह दिखती हैं। | ||
इन संवर्द्धन सुविधाओं को जोड़ना 2000 के दशक की शुरुआत से लगातार सुधार का क्षेत्र रहा है। अतिरिक्त पैटर्निंग का उपयोग करने के अलावा, आधुनिक सिस्टम चरण-शिफ्टिंग सामग्री, मल्टीपल-पैटर्निंग और अन्य तकनीकों को जोड़ते हैं। | इन संवर्द्धन सुविधाओं को जोड़ना 2000 के दशक की शुरुआत से लगातार सुधार का क्षेत्र रहा है। अतिरिक्त पैटर्निंग का उपयोग करने के अलावा, आधुनिक सिस्टम चरण-शिफ्टिंग सामग्री, मल्टीपल-पैटर्निंग और अन्य तकनीकों को जोड़ते हैं। साथ में, उन्होंने फीचर आकार को प्रकाशिकी की विवर्तन सीमा से नीचे परिमाण के क्रम तक सिकुड़ते रहने की अनुमति दी है। | ||
== रिज़ॉल्यूशन एन्हांसमेंट का उपयोग करना == | == रिज़ॉल्यूशन एन्हांसमेंट का उपयोग करना == | ||
परंपरागत रूप से, एक आईसी डिज़ाइन को भौतिक [[एकीकृत सर्किट लेआउट]] में परिवर्तित करने, स्टेटिक टाइमिंग विश्लेषण (एसटीए), और बहुभुज को डीआरसी-क्लीन (एक डिज़ाइन नियम) होने के लिए प्रमाणित करने के बाद, आईसी निर्माण के लिए तैयार था। विभिन्न परतों का प्रतिनिधित्व करने वाली डेटा फ़ाइलों को एक मास्क शॉप में भेज दिया गया था, जो प्रत्येक डेटा परत को एक संबंधित मास्क में बदलने के लिए मास्क-लेखन उपकरण का उपयोग करती थी, और मास्क को फ़ैब में भेज दिया जाता था जहाँ उनका उपयोग बार-बार सिलिकॉन में डिज़ाइन बनाने के लिए किया जाता था। अतीत में, [[आईसी लेआउट]] का निर्माण [[इलेक्ट्रॉनिक डिजाइन स्वचालन]] की भागीदारी का अंत था। | |||
परंपरागत रूप से, एक आईसी डिजाइन को भौतिक [[एकीकृत सर्किट लेआउट]] में परिवर्तित करने के बाद, स्टेटिक टाइमिंग विश्लेषण, और पॉलीगॉन को डिजाइन नियम की जांच करने के लिए प्रमाणित किया जाता है। डीआरसी-क्लीन, आईसी निर्माण के लिए तैयार था। विभिन्न परतों का प्रतिनिधित्व करने वाली डेटा फ़ाइलों को एक मास्क शॉप में भेज दिया गया था, जो प्रत्येक डेटा परत को एक संबंधित मास्क में बदलने के लिए मास्क-लेखन उपकरण का उपयोग करती थी, और मास्क को फ़ैब में भेज दिया जाता था जहाँ उनका उपयोग बार-बार सिलिकॉन में डिज़ाइन बनाने के लिए किया जाता था। अतीत में, [[आईसी लेआउट]] का निर्माण [[इलेक्ट्रॉनिक डिजाइन स्वचालन]] की भागीदारी का अंत था। | परंपरागत रूप से, एक आईसी डिजाइन को भौतिक [[एकीकृत सर्किट लेआउट]] में परिवर्तित करने के बाद, स्टेटिक टाइमिंग विश्लेषण, और पॉलीगॉन को डिजाइन नियम की जांच करने के लिए प्रमाणित किया जाता है। डीआरसी-क्लीन, आईसी निर्माण के लिए तैयार था। विभिन्न परतों का प्रतिनिधित्व करने वाली डेटा फ़ाइलों को एक मास्क शॉप में भेज दिया गया था, जो प्रत्येक डेटा परत को एक संबंधित मास्क में बदलने के लिए मास्क-लेखन उपकरण का उपयोग करती थी, और मास्क को फ़ैब में भेज दिया जाता था जहाँ उनका उपयोग बार-बार सिलिकॉन में डिज़ाइन बनाने के लिए किया जाता था। अतीत में, [[आईसी लेआउट]] का निर्माण [[इलेक्ट्रॉनिक डिजाइन स्वचालन]] की भागीदारी का अंत था। | ||
Revision as of 18:14, 28 June 2023
संकल्प वृद्धि प्रौद्योगिकियां प्रक्षेपण प्रणालियों के ऑप्टिकल संकल्प में सीमाओं की भरपाई के लिए एकीकृत सर्किट (आईसी या "चिप्स") बनाने के लिए उपयोग की जाने वाली फोटोलिथोग्राफी प्रक्रियाओं में फोटोमास्क को संशोधित करने के लिए उपयोग की जाने वाली विधियां हैं। ये प्रक्रियाएँ उस सीमा से कहीं अधिक सुविधाओं के निर्माण की अनुमति देती हैं जो आम तौर पर रेले मानदंड के कारण लागू होती हैं। आधुनिक प्रौद्योगिकियां 5 नैनोमीटर (एनएम) के क्रम पर सुविधाओं के निर्माण की अनुमति देती हैं, जो कि गहरे पराबैंगनी (डीयूवी) प्रकाश का उपयोग करके संभव सामान्य संकल्प से काफी कम है।
पृष्ठभूमि
एकीकृत सर्किट एक बहु-चरणीय प्रक्रिया में बनाए जाते हैं जिसे फोटोलिथोग्राफी के रूप में जाना जाता है। यह प्रक्रिया परतों की एक श्रृंखला के रूप में आईसी सर्किटरी के डिजाइन के साथ शुरू होती है, जिसे सिलिकॉन या अन्य अर्धचालक सामग्री की एक शीट की सतह पर प्रतिमानित किया जाएगा जिसे वेफर (इलेक्ट्रॉनिक्स) के रूप में जाना जाता है।
अंतिम डिज़ाइन की प्रत्येक परत एक फोटोमास्क पर बनाई गई है, जो आधुनिक प्रणालियों में अत्यधिक शुद्ध क्वार्ट्ज ग्लास पर जमा क्रोमियम की महीन रेखाओं से बनी होती है।का उपयोग किया जाता है क्योंकि यह यूवी प्रकाश के लिए अत्यधिक अपारदर्शी है, और क्वार्ट्ज का उपयोग किया जाता है क्योंकि इसमें प्रकाश स्रोतों की तीव्र गर्मी के तहत सीमित थर्मल विस्तार होता है और साथ ही पराबैंगनी प्रकाश के लिए अत्यधिक पारदर्शी होता है। मास्क को वेफर के ऊपर रखा जाता है और फिर तीव्र यूवी प्रकाश स्रोत के संपर्क में लाया जाता है। मास्क और वेफर के बीच एक उचित ऑप्टिकल इमेजिंग प्रणाली के साथ (या कोई इमेजिंग प्रणाली नहीं है यदि मास्क पर्याप्त रूप से वेफर के करीब स्थित है जैसे कि शुरुआती लिथोग्राफी मशीनों में), मास्क पैटर्न को वेफर की सतह पर फोटोरेसिस्ट की एक पतली परत पर चित्रित किया जाता है और फोटोरेसिस्ट का एक प्रकाश (यूवी या ईयूवी)-उजागर भाग रासायनिक प्रतिक्रियाओं का अनुभव करता है जिससे फोटोग्राफिक पैटर्न वेफर पर भौतिक रूप से बनाया जाता है।
जब प्रकाश किसी मास्क जैसे पैटर्न पर चमकता है, तो विवर्तन प्रभाव उत्पन्न होता है। इसके कारण यूवी लैंप से तेजी से केंद्रित प्रकाश मास्क के दूर तक फैल जाता है और दूरी पर तेजी से फोकसहीन हो जाता है। 1970 के दशक की शुरुआती प्रणालियों में, इन प्रभावों से बचने के लिए मास्क से सतह तक की दूरी को कम करने के लिए मास्क को वेफर के सीधे संपर्क में रखना आवश्यक था। जब मुखौटा उठाया जाता है तो यह अक्सर प्रतिरोधी कोटिंग को खींच लेता है और उस वेफर को बर्बाद कर देता है।विवर्तन-मुक्त छवि का उत्पादन अंततः प्रोजेक्शन एलाइनर (अर्धचालक) सिस्टम के माध्यम से हल किया गया, जो 1970 और 1980 के दशक की शुरुआत में चिप निर्माण पर हावी था।
मूर के नियम की निरंतर गति अंततः उस सीमा तक पहुंच गई जिसे प्रक्षेपण संरेखक संभाल सकते थे। पहले डीयूवी और फिर ईयूवी तक उच्चतर यूवी तरंग दैर्ध्य में जाकर उनके जीवनकाल को बढ़ाने का प्रयास किया गया, लेकिन इन तरंग दैर्ध्य पर निकलने वाली कम मात्रा में प्रकाश ने मशीनों को अव्यवहारिक बना दिया, जिसके लिए विशाल लैंप और लंबे अनावरण समय की आवश्यकता होती है। इसे स्टेपर्स की शुरुआत के माध्यम से हल किया गया था, जिसमें बहुत बड़े आकार के मास्क का उपयोग किया जाता था और छवि को कम करने के लिए लेंस का उपयोग किया जाता था। इन प्रणालियों में एलाइनर्स की तरह ही सुधार जारी रहा, लेकिन 1990 के दशक के अंत तक भी उन्हीं समस्याओं का सामना करना पड़ रहा था।
उस समय, इस बात पर काफी बहस हुई थी कि छोटी सुविधाओं की ओर कदम कैसे जारी रखा जाए। सॉफ्ट-एक्स-रे क्षेत्र में एक्साइमर लेज़रों का उपयोग करने वाली प्रणालियाँ एक समाधान थीं, लेकिन ये अविश्वसनीय रूप से महंगी थीं और इनके साथ काम करना कठिन था। यही वह समय था जब संकल्प वृद्धि का उपयोग किया जाने लगा।
मूल अवधारणा
विभिन्न संकल्प वृद्धि प्रणालियों में अंतर्निहित मूल अवधारणा दूसरों में विवर्तन को ऑफसेट करने के लिए कुछ स्थानों में विवर्तन का रचनात्मक उपयोग है। उदाहरण के लिए, जब प्रकाश मास्क पर एक रेखा के चारों ओर विवर्तित होता है तो यह चमकीली और गहरी रेखाओं, या "बैंड" की एक श्रृंखला उत्पन्न करेगा। जो वांछित तीव्र पैटर्न को फैलाएगा। इसे ऑफसेट करने के लिए, एक दूसरा पैटर्न जमा किया जाता है जिसका विवर्तन पैटर्न वांछित विशेषताओं के साथ ओवरलैप होता है, और जिनके बैंड विपरीत प्रभाव उत्पन्न करने के लिए मूल पैटर्न को ओवरलैप करने के लिए स्थित हैं - प्रकाश पर अंधेरा या जो इसके विपरीत भी संभव है। इस प्रकार की कई विशेषताएं जोड़ी जाती हैं, और संयुक्त पैटर्न मूल सुविधा उत्पन्न करता है। आमतौर पर, मास्क पर ये अतिरिक्त सुविधाएँ वांछित विशेषता के समानांतर पड़ी अतिरिक्त रेखाओं की तरह दिखती हैं।
इन संवर्द्धन सुविधाओं को जोड़ना 2000 के दशक की शुरुआत से लगातार सुधार का क्षेत्र रहा है। अतिरिक्त पैटर्निंग का उपयोग करने के अलावा, आधुनिक सिस्टम चरण-शिफ्टिंग सामग्री, मल्टीपल-पैटर्निंग और अन्य तकनीकों को जोड़ते हैं। साथ में, उन्होंने फीचर आकार को प्रकाशिकी की विवर्तन सीमा से नीचे परिमाण के क्रम तक सिकुड़ते रहने की अनुमति दी है।
रिज़ॉल्यूशन एन्हांसमेंट का उपयोग करना
परंपरागत रूप से, एक आईसी डिज़ाइन को भौतिक एकीकृत सर्किट लेआउट में परिवर्तित करने, स्टेटिक टाइमिंग विश्लेषण (एसटीए), और बहुभुज को डीआरसी-क्लीन (एक डिज़ाइन नियम) होने के लिए प्रमाणित करने के बाद, आईसी निर्माण के लिए तैयार था। विभिन्न परतों का प्रतिनिधित्व करने वाली डेटा फ़ाइलों को एक मास्क शॉप में भेज दिया गया था, जो प्रत्येक डेटा परत को एक संबंधित मास्क में बदलने के लिए मास्क-लेखन उपकरण का उपयोग करती थी, और मास्क को फ़ैब में भेज दिया जाता था जहाँ उनका उपयोग बार-बार सिलिकॉन में डिज़ाइन बनाने के लिए किया जाता था। अतीत में, आईसी लेआउट का निर्माण इलेक्ट्रॉनिक डिजाइन स्वचालन की भागीदारी का अंत था।
परंपरागत रूप से, एक आईसी डिजाइन को भौतिक एकीकृत सर्किट लेआउट में परिवर्तित करने के बाद, स्टेटिक टाइमिंग विश्लेषण, और पॉलीगॉन को डिजाइन नियम की जांच करने के लिए प्रमाणित किया जाता है। डीआरसी-क्लीन, आईसी निर्माण के लिए तैयार था। विभिन्न परतों का प्रतिनिधित्व करने वाली डेटा फ़ाइलों को एक मास्क शॉप में भेज दिया गया था, जो प्रत्येक डेटा परत को एक संबंधित मास्क में बदलने के लिए मास्क-लेखन उपकरण का उपयोग करती थी, और मास्क को फ़ैब में भेज दिया जाता था जहाँ उनका उपयोग बार-बार सिलिकॉन में डिज़ाइन बनाने के लिए किया जाता था। अतीत में, आईसी लेआउट का निर्माण इलेक्ट्रॉनिक डिजाइन स्वचालन की भागीदारी का अंत था।
हालाँकि, जैसा कि मूर के नियम ने सुविधाओं को कभी-छोटे आयामों तक पहुँचाया है, नए भौतिक प्रभाव जिन्हें अतीत में प्रभावी रूप से अनदेखा किया जा सकता था, वे अब उन विशेषताओं को प्रभावित कर रहे हैं जो सिलिकॉन वेफर पर बनती हैं। तो भले ही अंतिम लेआउट सिलिकॉन में जो वांछित है उसका प्रतिनिधित्व कर सकता है, फिर भी मास्क बनाने और भेजने से पहले लेआउट कई ईडीए उपकरणों के माध्यम से नाटकीय परिवर्तन से गुजर सकता है। इन परिवर्तनों की आवश्यकता डिज़ाइन के अनुसार उपकरण में कोई बदलाव करने के लिए नहीं है, बल्कि नए उपकरणों को वितरित करने के लिए केवल एक या दो पीढ़ियों के पीछे IC बनाने के लिए अक्सर खरीदे और अनुकूलित किए गए निर्माण उपकरण को अनुमति देने के लिए है। इन परिवर्तनों को दो प्रकार के होने के रूप में वर्गीकृत किया जा सकता है।
पहला प्रकार विरूपण सुधार है, अर्थात् निर्माण प्रक्रिया में निहित विकृतियों के लिए पूर्व-क्षतिपूर्ति, चाहे वह प्रसंस्करण चरण से हो, जैसे: फोटोलिथोग्राफी, नक़्क़ाशी, समतलीकरण और निक्षेपण। इन विकृतियों को मापा जाता है और एक उपयुक्त मॉडल फिट किया जाता है, मुआवजा आमतौर पर नियम या मॉडल आधारित एल्गोरिदम का उपयोग करके किया जाता है। फोटोलिथोग्राफी के दौरान मुद्रण विकृतियों पर लागू होने पर, इस विरूपण क्षतिपूर्ति को ऑप्टिकल निकटता सुधार (ओपीसी) के रूप में जाना जाता है।
दूसरे प्रकार के रेटिकल एन्हांसमेंट में वास्तव में प्रक्रिया की विनिर्माण क्षमता या संकल्प में सुधार करना शामिल है। इसके उदाहरणों में शामिल हैं:
RET Technique | Manufacturability Improvement |
---|---|
Scattering Bars | Sub resolution assist features that improves the depth of focus of isolated features. |
Phase-shift Mask | Etching quartz from certain areas of the mask (alt-PSM) or replacing Chrome with phase shifting Molybdenum Silicide layer (attenuated embedded PSM) to improve CD control and increase resolution |
Double or Multiple Patterning | Involves decomposing the design across multiple masks to allow the printing of tighter pitches. |
इनमें से प्रत्येक विनिर्माण क्षमता सुधार तकनीकों के लिए कुछ निश्चित लेआउट हैं जिन्हें या तो सुधारा नहीं जा सकता है या मुद्रण में समस्याएँ पैदा कर सकते हैं। इन्हें गैर-अनुपालन वाले लेआउट के रूप में वर्गीकृत किया गया है। इन्हें या तो डिज़ाइन चरण में टाला जाता है - उदाहरण के लिए, मौलिक रूप से प्रतिबंधित डिज़ाइन नियम और/या यदि उपयुक्त हो तो अतिरिक्त DRC चेक बनाना। लिथोग्राफिक क्षतिपूर्ति और विनिर्माण क्षमता में सुधार दोनों को आमतौर पर हेडिंग रिज़ॉल्यूशन एन्हांसमेंट तकनीक (आरईटी) के तहत समूहीकृत किया जाता है। इस तरह की तकनीकों का उपयोग 180nm नोड के बाद से किया गया है और अधिक आक्रामक रूप से न्यूनतम फीचर आकार के रूप में उपयोग किया जाता है, जो कि इमेजिंग वेवलेंथ से काफी नीचे गिर गया है, जो वर्तमान में 13.5 एनएम तक सीमित है।[1] यह विनिर्माण क्षमता (आईसी) या डीएफएम के लिए डिजाइन की अधिक सामान्य श्रेणी से निकटता से संबंधित है, और इसका एक हिस्सा है।
आरईटी के बाद, ईडीए प्रवाह में अगला चरण आमतौर पर मास्क डेटा तैयार करना होता है।
यह भी देखें
संदर्भ
- Electronic Design Automation For Integrated Circuits Handbook, by Lavagno, Martin, and Scheffer, ISBN 0-8493-3096-3 A survey of the field, from which this summary was derived, with permission.