संकल्प वृद्धि प्रौद्योगिकियां: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
{{Use American English|date = April 2019}}
{{Use American English|date = April 2019}}


'''संकल्प वृद्धि प्रौद्योगिकियां''' प्रक्षेपण प्रणालियों के [[ऑप्टिकल संकल्प]] में सीमाओं की क्षतिपूर्ति के लिए एकीकृत सर्किट (आईसी या "चिप्स") बनाने के लिए उपयोग की जाने वाली [[फोटोलिथोग्राफी]] प्रक्रियाओं में [[ photomask |फोटोमास्क]] को संशोधित करने के लिए उपयोग की जाने वाली विधियां हैं। ये प्रक्रियाएँ उस सीमा से कहीं अधिक सुविधाओं के निर्माण की अनुमति देती हैं जो आम तौर पर [[रेले मानदंड]] के कारण प्रयुक्त होती हैं। आधुनिक प्रौद्योगिकियां 5 [[नैनोमीटर]] (एनएम) के क्रम पर सुविधाओं के निर्माण की अनुमति देती हैं, जो कि [[गहरी पराबैंगनी|गहरे पराबैंगनी]]  (डीयूवी) प्रकाश का उपयोग करके संभव सामान्य संकल्प से बहुत कम है।
'''संकल्प वृद्धि प्रौद्योगिकियां''' प्रक्षेपण प्रणालियों के [[ऑप्टिकल संकल्प]] में सीमाओं की क्षतिपूर्ति के लिए एकीकृत सर्किट (आईसी या "चिप्स") बनाने के लिए उपयोग की जाने वाली [[फोटोलिथोग्राफी]] प्रक्रियाओं में [[ photomask |फोटोमास्क]] को संशोधित करने के लिए उपयोग की जाने वाली विधियां हैं। ये प्रक्रियाएँ उस सीमा से कहीं अधिक सुविधाओं के निर्माण की अनुमति देती हैं जो सामान्यतः [[रेले मानदंड]] के कारण प्रयुक्त होती हैं। आधुनिक प्रौद्योगिकियां 5 [[नैनोमीटर]] (एनएम) के क्रम पर सुविधाओं के निर्माण की अनुमति देती हैं, जो कि [[गहरी पराबैंगनी|गहरे पराबैंगनी]]  (डीयूवी) प्रकाश का उपयोग करके संभव सामान्य संकल्प से बहुत कम है।


== पृष्ठभूमि ==
== पृष्ठभूमि ==
एकीकृत सर्किट एक बहु-चरणीय प्रक्रिया में बनाए जाते हैं जिसे फोटोलिथोग्राफी के रूप में जाना जाता है। यह प्रक्रिया परतों की एक श्रृंखला के रूप में आईसी सर्किटरी के डिजाइन के साथ शुरू होती है, जिसे सिलिकॉन या अन्य [[अर्धचालक]] सामग्री की एक शीट की सतह पर प्रतिमानित किया जाएगा जिसे [[वेफर (इलेक्ट्रॉनिक्स)]] के रूप में जाना जाता है।
एकीकृत सर्किट एक बहु-चरणीय प्रक्रिया में बनाए जाते हैं जिसे फोटोलिथोग्राफी के रूप में जाना जाता है। यह प्रक्रिया परतों की एक श्रृंखला के रूप में आईसी सर्किटरी के डिजाइन के साथ शुरू होती है, जिसे सिलिकॉन या अन्य [[अर्धचालक]] सामग्री की एक शीट की सतह पर प्रतिमानित किया जाएगा जिसे [[वेफर (इलेक्ट्रॉनिक्स)]] के रूप में जाना जाता है।


अंतिम डिज़ाइन की प्रत्येक परत एक फोटोमास्क पर बनाई गई है, जो आधुनिक प्रणालियों में अत्यधिक शुद्ध क्वार्ट्ज ग्लास पर जमा [[क्रोमियम]] की महीन रेखाओं से बनी होती है।का उपयोग किया जाता है क्योंकि यह यूवी प्रकाश के लिए अत्यधिक अपारदर्शी है, और क्वार्ट्ज का उपयोग किया जाता है क्योंकि इसमें प्रकाश स्रोतों की तीव्र गर्मी के तहत सीमित थर्मल विस्तार होता है और साथ ही [[पराबैंगनी]] प्रकाश के लिए अत्यधिक पारदर्शी होता है। मास्क को वेफर के ऊपर रखा जाता है और फिर तीव्र यूवी प्रकाश स्रोत के संपर्क में लाया जाता है। मास्क और वेफर के बीच एक उचित ऑप्टिकल इमेजिंग प्रणाली के साथ (या कोई इमेजिंग प्रणाली नहीं है यदि मास्क पर्याप्त रूप से वेफर के करीब स्थित है जैसे कि शुरुआती लिथोग्राफी मशीनों में), मास्क पैटर्न को वेफर की सतह पर [[ photoresist |फोटोरेसिस्ट]] की एक पतली परत पर चित्रित किया जाता है और फोटोरेसिस्ट का एक प्रकाश (यूवी या ईयूवी)-उजागर भाग रासायनिक प्रतिक्रियाओं का अनुभव करता है जिससे फोटोग्राफिक पैटर्न वेफर पर भौतिक रूप से बनाया जाता है।
अंतिम डिज़ाइन की प्रत्येक परत एक फोटोमास्क पर बनाई गई है, जो आधुनिक प्रणालियों में अत्यधिक शुद्ध क्वार्ट्ज ग्लास पर जमा [[क्रोमियम]] की महीन रेखाओं से बनी होती है।का उपयोग किया जाता है क्योंकि यह यूवी प्रकाश के लिए अत्यधिक अपारदर्शी है, और क्वार्ट्ज का उपयोग किया जाता है क्योंकि इसमें प्रकाश स्रोतों की तीव्र गर्मी के तहत सीमित थर्मल विस्तार होता है और साथ ही [[पराबैंगनी]] प्रकाश के लिए अत्यधिक पारदर्शी होता है। मास्क को वेफर के ऊपर रखा जाता है और फिर तीव्र यूवी प्रकाश स्रोत के संपर्क में लाया जाता है। मास्क और वेफर के बीच एक उचित ऑप्टिकल इमेजिंग प्रणाली के साथ (या कोई इमेजिंग प्रणाली नहीं है यदि मास्क पर्याप्त रूप से वेफर के समीप स्थित है जैसे कि प्रारंभी लिथोग्राफी मशीनों में), मास्क पैटर्न को वेफर की सतह पर [[ photoresist |फोटोरेसिस्ट]] की एक पतली परत पर चित्रित किया जाता है और फोटोरेसिस्ट का एक प्रकाश (यूवी या ईयूवी)-उजागर भाग रासायनिक प्रतिक्रियाओं का अनुभव करता है जिससे फोटोग्राफिक पैटर्न वेफर पर भौतिक रूप से बनाया जाता है।


जब प्रकाश किसी मास्क जैसे पैटर्न पर चमकता है, तो [[विवर्तन]] प्रभाव उत्पन्न होता है। इसके कारण यूवी लैंप से तेजी से केंद्रित प्रकाश मास्क के दूर तक फैल जाता है और दूरी पर तेजी से फोकसहीन हो जाता है। 1970 के दशक की शुरुआती प्रणालियों में, इन प्रभावों से बचने के लिए मास्क से सतह तक की दूरी को कम करने के लिए मास्क को वेफर के सीधे संपर्क में रखना आवश्यक था। जब मुखौटा उठाया जाता है तो यह अक्सर प्रतिरोधी कोटिंग को खींच लेता है और उस वेफर को बर्बाद कर देता है।विवर्तन-मुक्त छवि का उत्पादन अंततः प्रोजेक्शन एलाइनर (अर्धचालक) सिस्टम के माध्यम से हल किया गया, जो 1970 और 1980 के दशक की शुरुआत में चिप निर्माण पर हावी था।
जब प्रकाश किसी मास्क जैसे पैटर्न पर चमकता है, तो [[विवर्तन]] प्रभाव उत्पन्न होता है। इसके कारण यूवी लैंप से तेजी से केंद्रित प्रकाश मास्क के दूर तक फैल जाता है और दूरी पर तेजी से फोकसहीन हो जाता है। 1970 के दशक की प्रारंभी प्रणालियों में, इन प्रभावों से बचने के लिए मास्क से सतह तक की दूरी को कम करने के लिए मास्क को वेफर के सीधे संपर्क में रखना आवश्यक था। जब मुखौटा उठाया जाता है तो यह अधिकांशतः प्रतिरोधी कोटिंग को खींच लेता है और उस वेफर को बर्पश्चात कर देता है।विवर्तन-मुक्त छवि का उत्पादन अंततः प्रोजेक्शन एलाइनर (अर्धचालक) सिस्टम के माध्यम से हल किया गया, जो 1970 और 1980 के दशक की प्रारंभ में चिप निर्माण पर हावी था।


मूर के नियम की निरंतर गति अंततः उस सीमा तक पहुंच गई जिसे प्रक्षेपण संरेखक संभाल सकते थे। पहले डीयूवी और फिर ईयूवी तक उच्चतर यूवी तरंग दैर्ध्य में जाकर उनके जीवनकाल को बढ़ाने का प्रयास किया गया, लेकिन इन तरंग दैर्ध्य पर निकलने वाली कम मात्रा में प्रकाश ने मशीनों को अव्यवहारिक बना दिया, जिसके लिए विशाल लैंप और लंबे अनावरण समय की आवश्यकता होती है। इसे [[स्टेपर|स्टेपर्स]] की शुरुआत के माध्यम से हल किया गया था, जिसमें बहुत बड़े आकार के मास्क का उपयोग किया जाता था और छवि को कम करने के लिए लेंस का उपयोग किया जाता था। इन प्रणालियों में एलाइनर्स की तरह ही सुधार जारी रहा, लेकिन 1990 के दशक के अंत तक भी उन्हीं समस्याओं का सामना करना पड़ रहा था।
मूर के नियम की निरंतर गति अंततः उस सीमा तक पहुंच गई जिसे प्रक्षेपण संरेखक संभाल सकते थे। पहले डीयूवी और फिर ईयूवी तक उच्चतर यूवी तरंग दैर्ध्य में जाकर उनके जीवनकाल को बढ़ाने का प्रयास किया गया, लेकिन इन तरंग दैर्ध्य पर निकलने वाली कम मात्रा में प्रकाश ने मशीनों को अव्यवहारिक बना दिया, जिसके लिए विशाल लैंप और लंबे अनावरण समय की आवश्यकता होती है। इसे [[स्टेपर|स्टेपर्स]] की प्रारंभ के माध्यम से हल किया गया था, जिसमें बहुत बड़े आकार के मास्क का उपयोग किया जाता था और छवि को कम करने के लिए लेंस का उपयोग किया जाता था। इन प्रणालियों में एलाइनर्स की तरह ही सुधार जारी रहा, लेकिन 1990 के दशक के अंत तक भी उन्हीं समस्याओं का सामना करना पड़ रहा था।


उस समय, इस बात पर काफी बहस हुई थी कि छोटी सुविधाओं की ओर कदम कैसे जारी रखा जाए। सॉफ्ट-एक्स-रे क्षेत्र में [[एक्साइमर लेजर|एक्साइमर लेज़रों]] का उपयोग करने वाली प्रणालियाँ एक समाधान थीं, लेकिन ये अविश्वसनीय रूप से महंगी थीं और इनके साथ काम करना कठिन था। यही वह समय था जब संकल्प वृद्धि का उपयोग किया जाने लगा।
उस समय, इस बात पर काफी बहस हुई थी कि छोटी सुविधाओं की ओर कदम कैसे जारी रखा जाए। सॉफ्ट-एक्स-रे क्षेत्र में [[एक्साइमर लेजर|एक्साइमर लेज़रों]] का उपयोग करने वाली प्रणालियाँ एक समाधान थीं, लेकिन ये अविश्वसनीय रूप से महंगी थीं और इनके साथ काम करना कठिन था। यही वह समय था जब संकल्प वृद्धि का उपयोग किया जाने लगा।


== मूल अवधारणा ==
== मूल अवधारणा ==
विभिन्न संकल्प वृद्धि प्रणालियों में अंतर्निहित मूल अवधारणा दूसरों में विवर्तन को ऑफसेट करने के लिए कुछ स्थानों में विवर्तन का रचनात्मक उपयोग है। उदाहरण के लिए, जब प्रकाश मास्क पर एक रेखा के चारों ओर विवर्तित होता है तो यह चमकीली और गहरी रेखाओं, या "बैंड" की एक श्रृंखला उत्पन्न करेगा। जो वांछित तीव्र पैटर्न को फैलाएगा। इसे ऑफसेट करने के लिए, एक दूसरा पैटर्न जमा किया जाता है जिसका विवर्तन पैटर्न वांछित विशेषताओं के साथ ओवरलैप होता है, और जिनके बैंड विपरीत प्रभाव उत्पन्न करने के लिए मूल पैटर्न को ओवरलैप करने के लिए स्थित हैं - प्रकाश पर अंधेरा या जो इसके विपरीत भी संभव है। इस प्रकार की कई विशेषताएं जोड़ी जाती हैं, और संयुक्त पैटर्न मूल सुविधा उत्पन्न करता है। आमतौर पर, मास्क पर ये अतिरिक्त सुविधाएँ वांछित विशेषता के समानांतर पड़ी अतिरिक्त रेखाओं की तरह दिखती हैं।
विभिन्न संकल्प वृद्धि प्रणालियों में अंतर्निहित मूल अवधारणा दूसरों में विवर्तन को ऑफसेट करने के लिए कुछ स्थानों में विवर्तन का रचनात्मक उपयोग है। उदाहरण के लिए, जब प्रकाश मास्क पर एक रेखा के चारों ओर विवर्तित होता है तो यह चमकीली और गहरी रेखाओं, या "बैंड" की एक श्रृंखला उत्पन्न करेगा। जो वांछित तीव्र पैटर्न को फैलाएगा। इसे ऑफसेट करने के लिए, एक दूसरा पैटर्न जमा किया जाता है जिसका विवर्तन पैटर्न वांछित विशेषताओं के साथ ओवरलैप होता है, और जिनके बैंड विपरीत प्रभाव उत्पन्न करने के लिए मूल पैटर्न को ओवरलैप करने के लिए स्थित हैं - प्रकाश पर अंधेरा या जो इसके विपरीत भी संभव है। इस प्रकार की कई विशेषताएं जोड़ी जाती हैं, और संयुक्त पैटर्न मूल सुविधा उत्पन्न करता है। सामान्यतः, मास्क पर ये अतिरिक्त सुविधाएँ वांछित विशेषता के समानांतर पड़ी अतिरिक्त रेखाओं की तरह दिखती हैं।


इन संवर्द्धन सुविधाओं को जोड़ना 2000 के दशक की शुरुआत से लगातार सुधार का क्षेत्र रहा है। अतिरिक्त पैटर्निंग का उपयोग करने के अलावा, आधुनिक सिस्टम चरण-शिफ्टिंग सामग्री, मल्टीपल-पैटर्निंग और अन्य तकनीकों को जोड़ते हैं। साथ में, उन्होंने फीचर आकार को प्रकाशिकी की विवर्तन सीमा से नीचे परिमाण के क्रम तक सिकुड़ते रहने की अनुमति दी है।
इन संवर्द्धन सुविधाओं को जोड़ना 2000 के दशक की प्रारंभ से लगातार सुधार का क्षेत्र रहा है। अतिरिक्त पैटर्निंग का उपयोग करने के अतिरिक्त, आधुनिक सिस्टम चरण-शिफ्टिंग सामग्री, मल्टीपल-पैटर्निंग और अन्य तकनीकों को जोड़ते हैं। साथ में, उन्होंने फीचर आकार को प्रकाशिकी की विवर्तन सीमा से नीचे परिमाण के क्रम तक सिकुड़ते रहने की अनुमति दी है।


== संकल्प वृद्धि का उपयोग करना ==
== संकल्प वृद्धि का उपयोग करना ==
परंपरागत रूप से, एक आईसी डिज़ाइन को भौतिक [[एकीकृत सर्किट लेआउट]] में परिवर्तित करने, स्टेटिक टाइमिंग विश्लेषण (एसटीए), और बहुभुज को डीआरसी-क्लीन (एक डिज़ाइन नियम) होने के लिए प्रमाणित करने के बाद, आईसी निर्माण के लिए तैयार था। विभिन्न परतों का प्रतिनिधित्व करने वाली डेटा फ़ाइलों को एक मास्क शॉप में भेज दिया गया था, जो प्रत्येक डेटा परत को एक संबंधित मास्क में परिवर्तित के लिए मास्क-लेखन उपयोग करता था, और मास्क को फैब में भेज दिया जाता था जहां उनका उपयोग सिलिकॉन में डिज़ाइनों को बार-बार बनाने के लिए किया जाता था। अतीत में, [[आईसी लेआउट]] का निर्माण [[इलेक्ट्रॉनिक डिजाइन स्वचालन]] की भागीदारी का अंत था।
परंपरागत रूप से, एक आईसी डिज़ाइन को भौतिक [[एकीकृत सर्किट लेआउट]] में परिवर्तित करने, स्टेटिक टाइमिंग विश्लेषण (एसटीए), और बहुभुज को डीआरसी-क्लीन (एक डिज़ाइन नियम) होने के लिए प्रमाणित करने के पश्चात, आईसी निर्माण के लिए तैयार था। विभिन्न परतों का प्रतिनिधित्व करने वाली डेटा फ़ाइलों को एक मास्क शॉप में भेज दिया गया था, जो प्रत्येक डेटा परत को एक संबंधित मास्क में परिवर्तित के लिए मास्क-लेखन उपयोग करता था, और मास्क को फैब में भेज दिया जाता था जहां उनका उपयोग सिलिकॉन में डिज़ाइनों को बार-बार बनाने के लिए किया जाता था। अतीत में, [[आईसी लेआउट]] का निर्माण [[इलेक्ट्रॉनिक डिजाइन स्वचालन]] की भागीदारी का अंत था।


हालाँकि, कि मूर के नियम ने सुविधाओं को अत्यंत छोटे आयामों तक सीमित कर दिया है, नए भौतिक प्रभाव जिन्हें अतीत में प्रभावी ढंग से अनदेखा किया जा सकता था, अब सिलिकॉन वेफर पर बनने वाली सुविधाओं को प्रभावित कर रहे हैं। इसलिए भले ही अंतिम लेआउट सिलिकॉन में वांछित का प्रतिनिधित्व कर सकता है, फिर भी मास्क के निर्माण और शिपमेंट से पहले लेआउट कई ईडीए उपकरणों के माध्यम से नाटकीय परिवर्तन से गुजर सकता है। इन परिवर्तनों की आवश्यकता डिज़ाइन के अनुसार डिवाइस में कोई बदलाव करने के लिए नहीं है, बल्कि केवल विनिर्माण उपकरण को अनुमति देने के लिए है, जो अक्सर एक या दो पीढ़ी पीछे आईसी बनाने के लिए खरीदे और अनुकूलित होते हैं, ताकि नए डिवाइस वितरित किए जा सकें। इन परिवर्तनों को दो प्रकार के रूप में वर्गीकृत किया जा सकता है।
हालाँकि, कि मूर के नियम ने सुविधाओं को अत्यंत छोटे आयामों तक सीमित कर दिया है, नए भौतिक प्रभाव जिन्हें अतीत में प्रभावी ढंग से अनदेखा किया जा सकता था, अब सिलिकॉन वेफर पर बनने वाली सुविधाओं को प्रभावित कर रहे हैं। इसलिए भले ही अंतिम लेआउट सिलिकॉन में वांछित का प्रतिनिधित्व कर सकता है, फिर भी मास्क के निर्माण और शिपमेंट से पहले लेआउट कई ईडीए उपकरणों के माध्यम से नाटकीय परिवर्तन से गुजर सकता है। इन परिवर्तनों की आवश्यकता डिज़ाइन के अनुसार डिवाइस में कोई बदलाव करने के लिए नहीं है, बल्कि केवल विनिर्माण उपकरण को अनुमति देने के लिए है, जो अधिकांशतः एक या दो पीढ़ी पीछे आईसी बनाने के लिए खरीदे और अनुकूलित होते हैं, जिससे कि नए डिवाइस वितरित किए जा सकें। इन परिवर्तनों को दो प्रकार के रूप में वर्गीकृत किया जा सकता है।


पहला प्रकार विरूपण सुधार है, अर्थात् विनिर्माण प्रक्रिया में अंतर्निहित विकृतियों के लिए पूर्व-क्षतिपूर्ति, चाहे वह प्रसंस्करण चरण से हो, जैसे: फोटोलिथोग्राफी, नक़्क़ाशी, समतलीकरण और निक्षेपण। इन विकृतियों को मापा जाता है और एक उपयुक्त मॉडल फिट किया जाता है, मुआवजा आमतौर पर एक नियम या मॉडल आधारित एल्गोरिदम का उपयोग करके किया जाता है। जब फोटोलिथोग्राफी के दौरान मुद्रण विकृतियों पर लागू किया जाता है, तो इस विरूपण क्षतिपूर्ति को [[ऑप्टिकल निकटता सुधार]] (ओपीसी) के रूप में जाना जाता है।
पहला प्रकार विरूपण सुधार है, अर्थात् विनिर्माण प्रक्रिया में अंतर्निहित विकृतियों के लिए पूर्व-क्षतिपूर्ति, चाहे वह प्रसंस्करण चरण से हो, जैसे: फोटोलिथोग्राफी, नक़्क़ाशी, समतलीकरण और निक्षेपण। इन विकृतियों को मापा जाता है और एक उपयुक्त मॉडल फिट किया जाता है, मुआवजा सामान्यतः एक नियम या मॉडल आधारित एल्गोरिदम का उपयोग करके किया जाता है। जब फोटोलिथोग्राफी के समय मुद्रण विकृतियों पर लागू किया जाता है, तो इस विरूपण क्षतिपूर्ति को [[ऑप्टिकल निकटता सुधार]] (ओपीसी) के रूप में जाना जाता है।


दूसरे प्रकार के रेटिकल वृद्धि में वास्तव में प्रक्रिया की विनिर्माण क्षमता या संकल्प में सुधार करना शामिल है। इसके उदाहरणों में शामिल हैं:
दूसरे प्रकार के रेटिकल वृद्धि में वास्तव में प्रक्रिया की विनिर्माण क्षमता या संकल्प में सुधार करना सम्मलित है। इसके उदाहरणों में सम्मलित हैं:


{| class="wikitable" border="1"
{| class="wikitable" border="1"
Line 42: Line 42:
|-
|-
| [[double patterning|डबल या मल्टीपल पैटर्निंग]]
| [[double patterning|डबल या मल्टीपल पैटर्निंग]]
| इसमें सख्त पिचों की छपाई की अनुमति देने के लिए कई मुखौटों में डिज़ाइन को विघटित करना शामिल है।
| इसमें सख्त पिचों की छपाई की अनुमति देने के लिए कई मुखौटों में डिज़ाइन को विघटित करना सम्मलित है।
|}
|}
इनमें से प्रत्येक विनिर्माण क्षमता सुधार तकनीक के लिए कुछ निश्चित लेआउट हैं जिनमें या तो सुधार नहीं किया जा सकता है या मुद्रण में समस्याएँ पैदा हो सकती हैं। इन्हें गैर-अनुपालक लेआउट के रूप में वर्गीकृत किया गया है। इन्हें या तो डिज़ाइन चरण में टाला जाता है - उदाहरण के लिए, रैडली रेस्ट्रिक्टिव डिज़ाइन नियमों का उपयोग करना और/या यदि उपयुक्त हो तो अतिरिक्त डीआरसी जाँच बनाना। लिथोग्राफिक क्षतिपूर्ति और विनिर्माण क्षमता सुधार दोनों को आमतौर पर शीर्षक रिज़ॉल्यूशन एन्हांसमेंट तकनीक (आरईटी) के अंतर्गत समूहीकृत किया जाता है। ऐसी तकनीकों का उपयोग 180nm नोड के बाद से किया गया है और न्यूनतम फीचर आकार के रूप में अधिक आक्रामक रूप से उपयोग किया जाने लगा है क्योंकि यह इमेजिंग तरंग दैर्ध्य से काफी नीचे चला गया है, जो वर्तमान में 13.5 एनएम तक सीमित है।<ref>{{cite web |url=https://semiengineering.com/knowledge_centers/manufacturing/lithography/euv/ |title = EUV: Extreme Ultraviolet Lithography - Semiconductor Engineering}}</ref>
इनमें से प्रत्येक विनिर्माण क्षमता सुधार तकनीक के लिए कुछ निश्चित लेआउट हैं जिनमें या तो सुधार नहीं किया जा सकता है या मुद्रण में समस्याएँ पैदा हो सकती हैं। इन्हें गैर-अनुपालक लेआउट के रूप में वर्गीकृत किया गया है। इन्हें या तो डिज़ाइन चरण में टाला जाता है - उदाहरण के लिए, रैडली रेस्ट्रिक्टिव डिज़ाइन नियमों का उपयोग करना और/या यदि उपयुक्त हो तो अतिरिक्त डीआरसी जाँच बनाना। लिथोग्राफिक क्षतिपूर्ति और विनिर्माण क्षमता सुधार दोनों को सामान्यतः शीर्षक रिज़ॉल्यूशन एन्हांसमेंट तकनीक (आरईटी) के अंतर्गत समूहीकृत किया जाता है। ऐसी तकनीकों का उपयोग 180nm नोड के पश्चात से किया गया है और न्यूनतम फीचर आकार के रूप में अधिक आक्रामक रूप से उपयोग किया जाने लगा है क्योंकि यह इमेजिंग तरंग दैर्ध्य से काफी नीचे चला गया है, जो वर्तमान में 13.5 एनएम तक सीमित है।<ref>{{cite web |url=https://semiengineering.com/knowledge_centers/manufacturing/lithography/euv/ |title = EUV: Extreme Ultraviolet Lithography - Semiconductor Engineering}}</ref>


यह विनिर्माण क्षमता (आईसी) या डीएफएम के लिए डिजाइन की अधिक सामान्य श्रेणी से निकटता से संबंधित है और इसका एक हिस्सा है।
यह विनिर्माण क्षमता (आईसी) या डीएफएम के लिए डिजाइन की अधिक सामान्य श्रेणी से निकटता से संबंधित है और इसका एक हिस्सा है।


आरईटी के बाद, ईडीए प्रवाह में अगला चरण आमतौर पर मास्क डेटा तैयार (एमडीपी) करना है।
आरईटी के पश्चात, ईडीए प्रवाह में अगला चरण सामान्यतः मास्क डेटा तैयार (एमडीपी) करना है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 19:43, 28 June 2023

संकल्प वृद्धि प्रौद्योगिकियां प्रक्षेपण प्रणालियों के ऑप्टिकल संकल्प में सीमाओं की क्षतिपूर्ति के लिए एकीकृत सर्किट (आईसी या "चिप्स") बनाने के लिए उपयोग की जाने वाली फोटोलिथोग्राफी प्रक्रियाओं में फोटोमास्क को संशोधित करने के लिए उपयोग की जाने वाली विधियां हैं। ये प्रक्रियाएँ उस सीमा से कहीं अधिक सुविधाओं के निर्माण की अनुमति देती हैं जो सामान्यतः रेले मानदंड के कारण प्रयुक्त होती हैं। आधुनिक प्रौद्योगिकियां 5 नैनोमीटर (एनएम) के क्रम पर सुविधाओं के निर्माण की अनुमति देती हैं, जो कि गहरे पराबैंगनी (डीयूवी) प्रकाश का उपयोग करके संभव सामान्य संकल्प से बहुत कम है।

पृष्ठभूमि

एकीकृत सर्किट एक बहु-चरणीय प्रक्रिया में बनाए जाते हैं जिसे फोटोलिथोग्राफी के रूप में जाना जाता है। यह प्रक्रिया परतों की एक श्रृंखला के रूप में आईसी सर्किटरी के डिजाइन के साथ शुरू होती है, जिसे सिलिकॉन या अन्य अर्धचालक सामग्री की एक शीट की सतह पर प्रतिमानित किया जाएगा जिसे वेफर (इलेक्ट्रॉनिक्स) के रूप में जाना जाता है।

अंतिम डिज़ाइन की प्रत्येक परत एक फोटोमास्क पर बनाई गई है, जो आधुनिक प्रणालियों में अत्यधिक शुद्ध क्वार्ट्ज ग्लास पर जमा क्रोमियम की महीन रेखाओं से बनी होती है।का उपयोग किया जाता है क्योंकि यह यूवी प्रकाश के लिए अत्यधिक अपारदर्शी है, और क्वार्ट्ज का उपयोग किया जाता है क्योंकि इसमें प्रकाश स्रोतों की तीव्र गर्मी के तहत सीमित थर्मल विस्तार होता है और साथ ही पराबैंगनी प्रकाश के लिए अत्यधिक पारदर्शी होता है। मास्क को वेफर के ऊपर रखा जाता है और फिर तीव्र यूवी प्रकाश स्रोत के संपर्क में लाया जाता है। मास्क और वेफर के बीच एक उचित ऑप्टिकल इमेजिंग प्रणाली के साथ (या कोई इमेजिंग प्रणाली नहीं है यदि मास्क पर्याप्त रूप से वेफर के समीप स्थित है जैसे कि प्रारंभी लिथोग्राफी मशीनों में), मास्क पैटर्न को वेफर की सतह पर फोटोरेसिस्ट की एक पतली परत पर चित्रित किया जाता है और फोटोरेसिस्ट का एक प्रकाश (यूवी या ईयूवी)-उजागर भाग रासायनिक प्रतिक्रियाओं का अनुभव करता है जिससे फोटोग्राफिक पैटर्न वेफर पर भौतिक रूप से बनाया जाता है।

जब प्रकाश किसी मास्क जैसे पैटर्न पर चमकता है, तो विवर्तन प्रभाव उत्पन्न होता है। इसके कारण यूवी लैंप से तेजी से केंद्रित प्रकाश मास्क के दूर तक फैल जाता है और दूरी पर तेजी से फोकसहीन हो जाता है। 1970 के दशक की प्रारंभी प्रणालियों में, इन प्रभावों से बचने के लिए मास्क से सतह तक की दूरी को कम करने के लिए मास्क को वेफर के सीधे संपर्क में रखना आवश्यक था। जब मुखौटा उठाया जाता है तो यह अधिकांशतः प्रतिरोधी कोटिंग को खींच लेता है और उस वेफर को बर्पश्चात कर देता है।विवर्तन-मुक्त छवि का उत्पादन अंततः प्रोजेक्शन एलाइनर (अर्धचालक) सिस्टम के माध्यम से हल किया गया, जो 1970 और 1980 के दशक की प्रारंभ में चिप निर्माण पर हावी था।

मूर के नियम की निरंतर गति अंततः उस सीमा तक पहुंच गई जिसे प्रक्षेपण संरेखक संभाल सकते थे। पहले डीयूवी और फिर ईयूवी तक उच्चतर यूवी तरंग दैर्ध्य में जाकर उनके जीवनकाल को बढ़ाने का प्रयास किया गया, लेकिन इन तरंग दैर्ध्य पर निकलने वाली कम मात्रा में प्रकाश ने मशीनों को अव्यवहारिक बना दिया, जिसके लिए विशाल लैंप और लंबे अनावरण समय की आवश्यकता होती है। इसे स्टेपर्स की प्रारंभ के माध्यम से हल किया गया था, जिसमें बहुत बड़े आकार के मास्क का उपयोग किया जाता था और छवि को कम करने के लिए लेंस का उपयोग किया जाता था। इन प्रणालियों में एलाइनर्स की तरह ही सुधार जारी रहा, लेकिन 1990 के दशक के अंत तक भी उन्हीं समस्याओं का सामना करना पड़ रहा था।

उस समय, इस बात पर काफी बहस हुई थी कि छोटी सुविधाओं की ओर कदम कैसे जारी रखा जाए। सॉफ्ट-एक्स-रे क्षेत्र में एक्साइमर लेज़रों का उपयोग करने वाली प्रणालियाँ एक समाधान थीं, लेकिन ये अविश्वसनीय रूप से महंगी थीं और इनके साथ काम करना कठिन था। यही वह समय था जब संकल्प वृद्धि का उपयोग किया जाने लगा।

मूल अवधारणा

विभिन्न संकल्प वृद्धि प्रणालियों में अंतर्निहित मूल अवधारणा दूसरों में विवर्तन को ऑफसेट करने के लिए कुछ स्थानों में विवर्तन का रचनात्मक उपयोग है। उदाहरण के लिए, जब प्रकाश मास्क पर एक रेखा के चारों ओर विवर्तित होता है तो यह चमकीली और गहरी रेखाओं, या "बैंड" की एक श्रृंखला उत्पन्न करेगा। जो वांछित तीव्र पैटर्न को फैलाएगा। इसे ऑफसेट करने के लिए, एक दूसरा पैटर्न जमा किया जाता है जिसका विवर्तन पैटर्न वांछित विशेषताओं के साथ ओवरलैप होता है, और जिनके बैंड विपरीत प्रभाव उत्पन्न करने के लिए मूल पैटर्न को ओवरलैप करने के लिए स्थित हैं - प्रकाश पर अंधेरा या जो इसके विपरीत भी संभव है। इस प्रकार की कई विशेषताएं जोड़ी जाती हैं, और संयुक्त पैटर्न मूल सुविधा उत्पन्न करता है। सामान्यतः, मास्क पर ये अतिरिक्त सुविधाएँ वांछित विशेषता के समानांतर पड़ी अतिरिक्त रेखाओं की तरह दिखती हैं।

इन संवर्द्धन सुविधाओं को जोड़ना 2000 के दशक की प्रारंभ से लगातार सुधार का क्षेत्र रहा है। अतिरिक्त पैटर्निंग का उपयोग करने के अतिरिक्त, आधुनिक सिस्टम चरण-शिफ्टिंग सामग्री, मल्टीपल-पैटर्निंग और अन्य तकनीकों को जोड़ते हैं। साथ में, उन्होंने फीचर आकार को प्रकाशिकी की विवर्तन सीमा से नीचे परिमाण के क्रम तक सिकुड़ते रहने की अनुमति दी है।

संकल्प वृद्धि का उपयोग करना

परंपरागत रूप से, एक आईसी डिज़ाइन को भौतिक एकीकृत सर्किट लेआउट में परिवर्तित करने, स्टेटिक टाइमिंग विश्लेषण (एसटीए), और बहुभुज को डीआरसी-क्लीन (एक डिज़ाइन नियम) होने के लिए प्रमाणित करने के पश्चात, आईसी निर्माण के लिए तैयार था। विभिन्न परतों का प्रतिनिधित्व करने वाली डेटा फ़ाइलों को एक मास्क शॉप में भेज दिया गया था, जो प्रत्येक डेटा परत को एक संबंधित मास्क में परिवर्तित के लिए मास्क-लेखन उपयोग करता था, और मास्क को फैब में भेज दिया जाता था जहां उनका उपयोग सिलिकॉन में डिज़ाइनों को बार-बार बनाने के लिए किया जाता था। अतीत में, आईसी लेआउट का निर्माण इलेक्ट्रॉनिक डिजाइन स्वचालन की भागीदारी का अंत था।

हालाँकि, कि मूर के नियम ने सुविधाओं को अत्यंत छोटे आयामों तक सीमित कर दिया है, नए भौतिक प्रभाव जिन्हें अतीत में प्रभावी ढंग से अनदेखा किया जा सकता था, अब सिलिकॉन वेफर पर बनने वाली सुविधाओं को प्रभावित कर रहे हैं। इसलिए भले ही अंतिम लेआउट सिलिकॉन में वांछित का प्रतिनिधित्व कर सकता है, फिर भी मास्क के निर्माण और शिपमेंट से पहले लेआउट कई ईडीए उपकरणों के माध्यम से नाटकीय परिवर्तन से गुजर सकता है। इन परिवर्तनों की आवश्यकता डिज़ाइन के अनुसार डिवाइस में कोई बदलाव करने के लिए नहीं है, बल्कि केवल विनिर्माण उपकरण को अनुमति देने के लिए है, जो अधिकांशतः एक या दो पीढ़ी पीछे आईसी बनाने के लिए खरीदे और अनुकूलित होते हैं, जिससे कि नए डिवाइस वितरित किए जा सकें। इन परिवर्तनों को दो प्रकार के रूप में वर्गीकृत किया जा सकता है।

पहला प्रकार विरूपण सुधार है, अर्थात् विनिर्माण प्रक्रिया में अंतर्निहित विकृतियों के लिए पूर्व-क्षतिपूर्ति, चाहे वह प्रसंस्करण चरण से हो, जैसे: फोटोलिथोग्राफी, नक़्क़ाशी, समतलीकरण और निक्षेपण। इन विकृतियों को मापा जाता है और एक उपयुक्त मॉडल फिट किया जाता है, मुआवजा सामान्यतः एक नियम या मॉडल आधारित एल्गोरिदम का उपयोग करके किया जाता है। जब फोटोलिथोग्राफी के समय मुद्रण विकृतियों पर लागू किया जाता है, तो इस विरूपण क्षतिपूर्ति को ऑप्टिकल निकटता सुधार (ओपीसी) के रूप में जाना जाता है।

दूसरे प्रकार के रेटिकल वृद्धि में वास्तव में प्रक्रिया की विनिर्माण क्षमता या संकल्प में सुधार करना सम्मलित है। इसके उदाहरणों में सम्मलित हैं:

आरईटी प्रविधि विनिर्माण क्षमता में सुधार
प्रकीर्णन बार्स उप-संकल्प सहायता सुविधाएँ जो पृथक सुविधाओं के फोकस की गहराई में सुधार करती हैं।
चरण-शिफ्ट मास्क सीडी नियंत्रण में सुधार और रिज़ॉल्यूशन बढ़ाने के लिए मास्क के कुछ क्षेत्रों से क्वार्ट्ज निक्षारण (ऑल्ट-पीएसएम) या क्रोम को फेज़ शिफ्टिंग मोलिब्डेनम सिलिसाइड परत (क्षीण एम्बेडेड पीएसएम) से बदलना
डबल या मल्टीपल पैटर्निंग इसमें सख्त पिचों की छपाई की अनुमति देने के लिए कई मुखौटों में डिज़ाइन को विघटित करना सम्मलित है।

इनमें से प्रत्येक विनिर्माण क्षमता सुधार तकनीक के लिए कुछ निश्चित लेआउट हैं जिनमें या तो सुधार नहीं किया जा सकता है या मुद्रण में समस्याएँ पैदा हो सकती हैं। इन्हें गैर-अनुपालक लेआउट के रूप में वर्गीकृत किया गया है। इन्हें या तो डिज़ाइन चरण में टाला जाता है - उदाहरण के लिए, रैडली रेस्ट्रिक्टिव डिज़ाइन नियमों का उपयोग करना और/या यदि उपयुक्त हो तो अतिरिक्त डीआरसी जाँच बनाना। लिथोग्राफिक क्षतिपूर्ति और विनिर्माण क्षमता सुधार दोनों को सामान्यतः शीर्षक रिज़ॉल्यूशन एन्हांसमेंट तकनीक (आरईटी) के अंतर्गत समूहीकृत किया जाता है। ऐसी तकनीकों का उपयोग 180nm नोड के पश्चात से किया गया है और न्यूनतम फीचर आकार के रूप में अधिक आक्रामक रूप से उपयोग किया जाने लगा है क्योंकि यह इमेजिंग तरंग दैर्ध्य से काफी नीचे चला गया है, जो वर्तमान में 13.5 एनएम तक सीमित है।[1]

यह विनिर्माण क्षमता (आईसी) या डीएफएम के लिए डिजाइन की अधिक सामान्य श्रेणी से निकटता से संबंधित है और इसका एक हिस्सा है।

आरईटी के पश्चात, ईडीए प्रवाह में अगला चरण सामान्यतः मास्क डेटा तैयार (एमडीपी) करना है।

यह भी देखें

संदर्भ

  1. "EUV: Extreme Ultraviolet Lithography - Semiconductor Engineering".
  • एकीकृत सर्किट के लिए इलेक्ट्रॉनिक डिज़ाइन ऑटोमेशन हैंडबुक, लावाग्नो, मार्टिन और शेफ़र द्वारा, ISBN 0-8493-3096-3 उस क्षेत्र का एक सर्वेक्षण, जहां से अनुमति के साथ यह सारांश प्राप्त किया गया था।