समाई गुणक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''धारिता गुणक''' 'को बहुत बड़े संधारित्र की तरह संधारित्र कार्य करने के लिए डिज़ाइन किया गया है।यह कम से कम दो विधियों से प्राप्त किया जा सकता है। | |||
* इस प्रकार से | * इस प्रकार से सक्रिय परिपथ , ट्रांजिस्टर या ऑपरेशनल एम्पलीफायर जैसे उपकरण का उपयोग करना है। | ||
* निष्क्रिय परिपथ , ऑटोट्रांसफॉर्मर्स का उपयोग करके ये सामान्यतः | * निष्क्रिय परिपथ , ऑटोट्रांसफॉर्मर्स का उपयोग करके ये सामान्यतः अंशांकन मानकों के लिए उपयोग किए जाते हैं। सामान्य रेडियो / आईईटी लैब्स 1417 ऐसा उदाहरण है। | ||
संधारित्र मल्टीप्लायर कम-आवृत्ति फिल्टर और लंबी अवधि के समय के परिपथ बनाते हैं जो वास्तविक संधारित्र के साथ अव्यावहारिक होता है।एक से अधिक एप्लिकेशन डीसी पावर सप्लाई में है जहां बहुत कम रिपल वोल्टेज (लोड के तहत) सर्वोपरि का महत्व है, जैसे कि क्लास-ए एम्पलीफायरों में उपयुक्त किया जाता है। | |||
== ट्रांजिस्टर-आधारित == | == ट्रांजिस्टर-आधारित == | ||
[[File:cap-mult-q.svg|thumb|right|एक बुनियादी | [[File:cap-mult-q.svg|thumb|right|एक बुनियादी धारिता गुणक।]] | ||
यहाँ संधारित्र C1 की | यहाँ संधारित्र C1 की धारिता लगभग ट्रांजिस्टर के वर्तमान लाभ (β) से गुणा की जाती है। | ||
Q के बिना, R2 संधारित्र पर लोड होगा।जगह में Q के साथ, C1 पर लगाया गया लोडिंग केवल लोड धारा | Q के बिना, R2 संधारित्र पर लोड होगा।जगह में Q के साथ, C1 पर लगाया गया लोडिंग केवल लोड धारा है (β + 1) के कारक द्वारा कम किया गया हो। परिमाण स्वरुप , C1 लोड द्वारा देखे जाने पर () + 1) के कारक से गुणा दिखाई देता है। | ||
इस प्रकार से | इस प्रकार से यह है कि इस परिपथ को संधारित्र C1 होल्डिंग वोल्टेज के साथ एमिटर फॉलोअर के रूप में देखा जाए, जो कि Q1 के इनपुट प्रतिबाधा के लोड के साथ बेस कॉन्स्टेंट पर वोल्टेज हो रहा है: R2 को गुणा किया गया (1 + β), इसलिए आउटपुट धारा को पावर लाइन वोल्टेज ध्वनि के विरुद्ध बहुत अधिक स्थिर किया जाता है।। | ||
== परिचालन एम्पलीफायर आधारित == | == परिचालन एम्पलीफायर आधारित == | ||
[[File:cap-mult-op.svg|thumb|right|एक बुनियादी ऑप एम्प | [[File:cap-mult-op.svg|thumb|right|एक बुनियादी ऑप एम्प धारिता गुणक।]] | ||
यहाँ, संधारित्र C1 की | यहाँ, संधारित्र C1 की धारिता प्रतिरोध C = C1 * (1+ (R1 / R2)) के अनुपात से गुणा की जाती है, यदि VI नोड में देखा जाता है। | ||
संश्लेषित | संश्लेषित धारिता भी R2 के समान श्रृंखला प्रतिरोध लाता है। | ||
एक नकारात्मक | संश्लेषित धारिता लगभग R2 के बराबर एक श्रृंखला प्रतिरोध भी लाता है, और ओपी के इनपुट ऑफसेट के कारण धारिता में एक लीकेज धारा दिखाई देता है। दो ऑप एम्प्स वाले परिपथ से इन समस्याओं से बचा जा सकता है। इस प्रणाली में यदि आवश्यक हो तो OP1 के इनपुट को एसी-युग्मित किया जा सकता है, और R1 से R2 के अनुपात को परिवर्तनीय बनाकर धारिता को परिवर्तनीय बनाया जा सकता है। C = C1 * (1 + (R2R1)).[1] | ||
ऊपर वर्णित परिपथ में धारिता ग्राउंडेड है, किन्तु फ्लोटिंग धारिता मल्टीप्लायर संभव हैं। | |||
एक नकारात्मक धारिता गुणक को नकारात्मक प्रतिबाधा कनवर्टर के साथ बनाया जा सकता है। | |||
== ऑटोट्रांसफॉर्मर आधारित == | == ऑटोट्रांसफॉर्मर आधारित == | ||
ये दो के उपयोग से उच्च-स्पष्ट | ये दो के उपयोग से उच्च-स्पष्ट कम मूल्य संधारित्र की धारिता को गुणा करके बड़े धारिता (जैसे, चित्र 1) के स्पष्ट मूल्यों के संश्लेषण की अनुमति देते हैं ट्रांसफॉर्मर। इसका कार्य संदर्भ मानक के रूप में कार्य करता है, न कि सामान्य-उद्देश्य परिपथ तत्व के रूप में किया जाता है। परिणामी उपकरण चार-टर्मिनल तत्व है और इसका उपयोग डीसी में नहीं किया जा सकता है। | ||
==संदर्भ== | ==संदर्भ== | ||
* [http://www.ietlabs.com/pdf/Manuals/1417_im.pdf IET Labs 1417 FOUR-TERMINAL CAPACITANCE STANDARD] | * [http://www.ietlabs.com/pdf/Manuals/1417_im.pdf IET Labs 1417 FOUR-TERMINAL CAPACITANCE STANDARD] [[Category: बिजली]] [[Category: इलेक्ट्रॉनिक सर्किट]]] | ||
[[Category: बिजली]] | |||
[[Category: इलेक्ट्रॉनिक सर्किट]]] | |||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] |
Revision as of 18:16, 1 July 2023
धारिता गुणक 'को बहुत बड़े संधारित्र की तरह संधारित्र कार्य करने के लिए डिज़ाइन किया गया है।यह कम से कम दो विधियों से प्राप्त किया जा सकता है।
- इस प्रकार से सक्रिय परिपथ , ट्रांजिस्टर या ऑपरेशनल एम्पलीफायर जैसे उपकरण का उपयोग करना है।
- निष्क्रिय परिपथ , ऑटोट्रांसफॉर्मर्स का उपयोग करके ये सामान्यतः अंशांकन मानकों के लिए उपयोग किए जाते हैं। सामान्य रेडियो / आईईटी लैब्स 1417 ऐसा उदाहरण है।
संधारित्र मल्टीप्लायर कम-आवृत्ति फिल्टर और लंबी अवधि के समय के परिपथ बनाते हैं जो वास्तविक संधारित्र के साथ अव्यावहारिक होता है।एक से अधिक एप्लिकेशन डीसी पावर सप्लाई में है जहां बहुत कम रिपल वोल्टेज (लोड के तहत) सर्वोपरि का महत्व है, जैसे कि क्लास-ए एम्पलीफायरों में उपयुक्त किया जाता है।
ट्रांजिस्टर-आधारित
यहाँ संधारित्र C1 की धारिता लगभग ट्रांजिस्टर के वर्तमान लाभ (β) से गुणा की जाती है।
Q के बिना, R2 संधारित्र पर लोड होगा।जगह में Q के साथ, C1 पर लगाया गया लोडिंग केवल लोड धारा है (β + 1) के कारक द्वारा कम किया गया हो। परिमाण स्वरुप , C1 लोड द्वारा देखे जाने पर () + 1) के कारक से गुणा दिखाई देता है।
इस प्रकार से यह है कि इस परिपथ को संधारित्र C1 होल्डिंग वोल्टेज के साथ एमिटर फॉलोअर के रूप में देखा जाए, जो कि Q1 के इनपुट प्रतिबाधा के लोड के साथ बेस कॉन्स्टेंट पर वोल्टेज हो रहा है: R2 को गुणा किया गया (1 + β), इसलिए आउटपुट धारा को पावर लाइन वोल्टेज ध्वनि के विरुद्ध बहुत अधिक स्थिर किया जाता है।।
परिचालन एम्पलीफायर आधारित
यहाँ, संधारित्र C1 की धारिता प्रतिरोध C = C1 * (1+ (R1 / R2)) के अनुपात से गुणा की जाती है, यदि VI नोड में देखा जाता है।
संश्लेषित धारिता भी R2 के समान श्रृंखला प्रतिरोध लाता है।
संश्लेषित धारिता लगभग R2 के बराबर एक श्रृंखला प्रतिरोध भी लाता है, और ओपी के इनपुट ऑफसेट के कारण धारिता में एक लीकेज धारा दिखाई देता है। दो ऑप एम्प्स वाले परिपथ से इन समस्याओं से बचा जा सकता है। इस प्रणाली में यदि आवश्यक हो तो OP1 के इनपुट को एसी-युग्मित किया जा सकता है, और R1 से R2 के अनुपात को परिवर्तनीय बनाकर धारिता को परिवर्तनीय बनाया जा सकता है। C = C1 * (1 + (R2R1)).[1]
ऊपर वर्णित परिपथ में धारिता ग्राउंडेड है, किन्तु फ्लोटिंग धारिता मल्टीप्लायर संभव हैं।
एक नकारात्मक धारिता गुणक को नकारात्मक प्रतिबाधा कनवर्टर के साथ बनाया जा सकता है।
ऑटोट्रांसफॉर्मर आधारित
ये दो के उपयोग से उच्च-स्पष्ट कम मूल्य संधारित्र की धारिता को गुणा करके बड़े धारिता (जैसे, चित्र 1) के स्पष्ट मूल्यों के संश्लेषण की अनुमति देते हैं ट्रांसफॉर्मर। इसका कार्य संदर्भ मानक के रूप में कार्य करता है, न कि सामान्य-उद्देश्य परिपथ तत्व के रूप में किया जाता है। परिणामी उपकरण चार-टर्मिनल तत्व है और इसका उपयोग डीसी में नहीं किया जा सकता है।