आउटपुट युग्मक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
[[Image:Laser.svg|thumb|275px|लेजर के प्रमुख घटक: {{ordered list |Active laser medium |Laser pumping energy |High reflector |'''Output coupler''' |Laser beam}}]]आउटपुट युग्मक (ओसी) एक ऑप्टिकल रेसोनेटर यंत्र का घटक है, जो लेजर के इंट्राकैविटी बीम से प्रकाश के एक भाग को निकालने की अनुमति देता है। और इस प्रकार आउटपुट युग्मक में प्राय: आंशिक रूप से परावर्तक दर्पण होता है, जिससे इंट्राकैविटी किरणपुंज के एक निश्चित भाग में से होकर संचारित करने की अनुमति मिलती है। अन्य विधियों में केविटी के प्रत्येक छोर पर लगभग पूरी तरह से परावर्तक दर्पणों का उपयोग किया जाता है और इस प्रकार बीम का उत्सर्जन या तो एक दर्पण के केंद्र में ड्रिल किए गए एक छोटे छेद में केंद्रित करके या घूर्णन दर्पण प्रिज्म के उपयोग के माध्यम से पुनर्निर्देशित करके किया जाता है। अन्य ऑप्टिकल उपकरण जिसके कारण बीम एक निश्चित समय पर अंत दर्पणों में से एक को बायपास कर देता है।
[[Image:Laser.svg|thumb|275px|लेजर के प्रमुख घटक: {{ordered list |Active laser medium |Laser pumping energy |High reflector |'''Output coupler''' |Laser beam}}]]आउटपुट युग्मक (ओसी) एक ऑप्टिकल रेसोनेटर यंत्र का घटक है, जो लेजर के इंट्राकैविटी बीम से प्रकाश के एक भाग को निकालने की अनुमति देता है। और इस प्रकार आउटपुट युग्मक में प्राय: आंशिक रूप से परावर्तक दर्पण होता है, जिससे इंट्राकैविटी किरणपुंज के एक निश्चित भाग में से होकर संचारित करने की अनुमति मिलती है। अन्य विधियों में केविटी के प्रत्येक छोर पर लगभग पूरी तरह से परावर्तक दर्पणों का उपयोग किया जाता है और इस प्रकार बीम का उत्सर्जन या तो एक दर्पण के केंद्र में ड्रिल किए गए एक छोटे छेद में केंद्रित करके या घूर्णन दर्पण प्रिज्म के उपयोग के माध्यम से पुनर्निर्देशित करके किया जाता है। अन्य ऑप्टिकल उपकरण जिसके कारण बीम एक निश्चित समय पर अंत दर्पणों में से एक को बायपास कर देता है।


== आंशिक रूप से प्रतिबिंबित दर्पण ==
== पार्शियली रिफ्लेक्टिव दर्पण ==
[[File:Laser dielectric output coupler centered @ 550nm.png|thumb|डाई लेजर के लिए एक डाइइलेक्ट्रिक आउटपुट-कपलर। 550 एनएम पर केंद्रित, बाईं तस्वीर पीले प्रकाश के लिए अपनी उच्च परावर्तन और लाल और नीले प्रकाश के लिए उच्च संप्रेषण दिखाती है। सही तस्वीर यह दिखाती है कि यह लेजर बीम के 75% को दर्शाती है और 25% संचारित करती है, हालांकि दूर जाने की तुलना में पर्यवेक्षक की ओर बढ़ते समय बीम उज्जवल दिखाई देता है।]]
[[File:Laser dielectric output coupler centered @ 550nm.png|thumb|डाई लेजर के लिए एक डाइइलेक्ट्रिक आउटपुट-कपलर। 550 एनएम पर केंद्रित, बाईं तस्वीर पीले प्रकाश के लिए अपनी उच्च परावर्तन और लाल और नीले प्रकाश के लिए उच्च संप्रेषण दिखाती है। सही तस्वीर यह दिखाती है कि यह लेजर बीम के 75% को दर्शाती है और 25% संचारित करती है, हालांकि दूर जाने की तुलना में पर्यवेक्षक की ओर बढ़ते समय बीम उज्जवल दिखाई देता है।]]
[[Image:outputcoupler.jpg|thumb|275px| हीलियम-नियॉन लेजर का आउटपुट कपलर]]एक आउटपुट कपलर के आकार में आंशिक रूप से दिखाई देने वाला दर्पण होता है जिसे [[बीम स्प्लीटर]]कहा जाता है। दर्पण का परावर्तन और संप्रेषण का निर्धारण सामान्यतया [[लेज़र माध्यम]] के लाभ से निर्धारित किया जाता है। कुछ लेज़रों में पराबैंगनीकिरण बहुत कम होता है, इसलिए बीम को पर्याप्त लाभ के लिए माध्यम से कई दर्रे बनाने होते हैं। इस स्थिति में आउटपुट युग्मक 99% परावर्तक के रूप में उच्च हो सकता है, जो केविटी की बीम में केवल 1% का उपयोग करने के लिए संचारण करता है। अधिकांश ठोस-अवस्था वाले लेज़रों की तुलना में [[डाई लेजर]] का लाभ बहुत अधिक होता है, इसलिए बीम को अपने इष्टतम लाभ तक पहुँचने के लिए तरल से कुछ ही गुजरने की आवश्यकता होती है, इस प्रकार आउटपुट कपलर सामान्यतः लगभग 80% परावर्तक होता है। अन्य लोगों में, जैसे कि [[एक्साइमर लेजर]], अनकोटेड [[ काँच |ग्लास]] के 4% परावर्तनीयता एक पर्याप्त दर्पण प्रदान करती है, जो लगभग 96% इंट्राकैविटी बीम को प्रसारित करती है।
[[Image:outputcoupler.jpg|thumb|275px| हीलियम-नियॉन लेजर का आउटपुट कपलर]]एक आउटपुट कपलर के आकार में पार्शियली रूप से दिखाई देने वाला दर्पण होता है जिसे [[बीम स्प्लीटर]] कहा जाता है। दर्पण का परावर्तन और संप्रेषण का निर्धारण सामान्यतया [[लेज़र माध्यम|लेज़र के माध्यम]] से निर्धारित किया जाता है। कुछ लेज़रों में पराबैंगनीकिरण बहुत कम होता है, इसलिए बीम को पर्याप्त लाभ के लिए माध्यम से कई दर्रे बनानी होती है। इस स्थिति में आउटपुट युग्मक 99% परावर्तक के रूप में उच्च हो सकता है, जो केविटी की बीम में केवल 1% का उपयोग करने के लिए संचारण करता है। अधिकांश ठोस-अवस्था वाले लेज़रों की तुलना में [[डाई लेजर]] का लाभ बहुत अधिक होता है, इसलिए बीम को अपने इष्टतम लाभ तक पहुँचने के लिए तरल से कुछ ही गुजरने की आवश्यकता होती है, इस प्रकार आउटपुट कपलर सामान्यतः लगभग 80% परावर्तक होता है। अन्य लोगों में, जैसे कि [[एक्साइमर लेजर]], अनकोटेड [[ काँच |ग्लास]] के 4% परावर्तनीयता एक पर्याप्त दर्पण प्रदान करती है, जो लगभग 96% इंट्राकैविटी बीम को प्रसारित करती है।


लेज़र दो या दो से अधिक दर्पणों के बीच परावर्तन (भौतिकी) प्रकाश द्वारा संचालित होते हैं, जिनके बीच एक सक्रिय लेज़र माध्यम होता है और इस प्रकार माध्यम उत्तेजित उत्सर्जन द्वारा प्रकाश को बढ़ाता है। जिससे की लेज़िंग होने के लिए सक्रिय माध्यम का लाभ लेज़र के कुल नुकसान से बड़ा होता है, जिसमें अवांछित प्रभाव जैसे [[अवशोषण (विद्युत चुम्बकीय विकिरण)]], बीम पथ के अतिरिक्त अन्य दिशाओं में उत्सर्जन और आउटपुट युग्मक के माध्यम से ऊर्जा का जानबूझकर रिलीज जैसे अवांछित प्रभाव के रूप में सम्मलित हैं। दूसरे शब्दों में, लेज़र को [[लेज़िंग दहलीज|अटैन थ्रेसहोल्ड]] तक पहुँचना होता है।
लेज़र दो या दो से अधिक दर्पणों के बीच परावर्तन (भौतिकी) प्रकाश द्वारा संचालित होते हैं, जिनके बीच एक सक्रिय लेज़र माध्यम होता है और इस प्रकार माध्यम उत्तेजित उत्सर्जन द्वारा प्रकाश को बढ़ाता है। जिससे की लेज़िंग होने के लिए सक्रिय माध्यम का लाभ लेज़र के कुल नुकसान से बड़ा होता है, जिसमें अवांछित प्रभाव जैसे [[अवशोषण (विद्युत चुम्बकीय विकिरण)]], बीम पथ के अतिरिक्त अन्य दिशाओं में उत्सर्जन और आउटपुट युग्मक के माध्यम से ऊर्जा का जानबूझकर रिलीज जैसे अवांछित प्रभाव के रूप में सम्मलित हैं। दूसरे शब्दों में, लेज़र को [[लेज़िंग दहलीज|अटैन थ्रेसहोल्ड]] तक पहुँचना होता है।
Line 11: Line 11:


* वक्रता की त्रिज्या
* वक्रता की त्रिज्या
: उच्च परावर्तक के आकार के साथ आउटपुट कपलर की सतह का आकार, ऑप्टिकल केविटी की स्थिरता निर्धारित करता है। ऑप्टिकल केविटी के डिजाइन के आधार पर आउटपुट कपलर या तो फ्लैट या [[घुमावदार दर्पण]] के रूप में हो सकता है और इस प्रकार वक्रता की त्रिज्या सामान्यतः केविटी के व्यास और लंबाई के साथ वांछित रूप में होता है, केविटी के प्रकार यानी: विमान / विमान, संकेंद्रित, कन्फोकल, आदि) द्वारा निर्धारित की जाती है। केविटी में सामना करने वाले आउटपुट कपलर का चेहरा आंशिक रूप से परावर्तक कोटिंग के साथ पक्ष है। यह वह पक्ष है जो लेजर मोडल गुणों को आंशिक रूप से निर्धारित करता है। यदि यह आंतरिक सतह घुमावदार है तो बाहरी सतह भी घुमावदार होनी चाहिए। यह OC को लेंस के रूप में कार्य करना बंद कर देगा। बाहरी सतह की वक्रता को एक संपार्श्विक लेजर आउटपुट देने के लिए डिज़ाइन किया जा सकता है। इस बाहरी सतह में आम तौर पर आउटपुट पावर को अधिकतम करने के लिए एक विरोधी [[प्रतिबिंब]] कोटिंग लागू होती है। नुकसान को कम करने, बीम प्रोफाइल को बढ़ाने और सुसंगतता को अधिकतम करने के लिए, सतह का आकार आमतौर पर बहुत उच्च इंजीनियरिंग सहनशीलता के लिए निर्मित होता है, एक आदर्श सतह से किसी भी विचलन को कम करता है। इन विचलनों को आम तौर पर इतना छोटा रखा जाता है कि उन्हें [[इंटरफेरोमीटर]] या [[ऑप्टिकल फ्लैट]] जैसे उपकरणों का उपयोग करके प्रकाश की [[तरंग दैर्ध्य]] में मापा जाता है। आमतौर पर, एक लेजर आउटपुट कपलर को λ/10 (प्रकाश की तरंग दैर्ध्य का दसवां हिस्सा) या बेहतर के भीतर सहिष्णुता के लिए निर्मित किया जाएगा।
: उच्च परावर्तक के आकार के साथ आउटपुट कपलर की सतह का आकार ऑप्टिकल केविटी की स्थिरता निर्धारित करता है। ऑप्टिकल केविटी के डिजाइन के आधार पर आउटपुट कपलर या तो फ्लैट या [[घुमावदार दर्पण|कर्व दर्पण]] के रूप में होता है और इस प्रकार वक्रता की त्रिज्या सामान्यतः तल, संकेंद्रित, कन्फोकल आदि के द्वारा निर्धारित की जाती है। केविटी के प्रकार केविटी के व्यास और लंबाई के साथ वांछित रूप में निर्धारित होता है, केविटी में सामना करने वाले आउटपुट कपलर का फेस आंशिक रूप से परावर्तक कोटिंग के साथ होता है। यह वह पक्ष है जो लेजर मोडल गुणों को आंशिक रूप से निर्धारित करता है। यदि यह आंतरिक सतह कर्वड रूप में होती है, तो बाहरी सतह भी कर्वड होनी चाहिए। यह ओसी को लेंस के रूप में कार्य करना बंद कर देता है। बाहरी सतह की वक्रता को एक संपार्श्विक लेजर आउटपुट देने के लिए डिज़ाइन किया जा सकता है। इस बाहरी सतह में सामान्यतः आउटपुट पावर को अधिकतम करने के लिए एक विरोधी [[प्रतिबिंब]] कोटिंग प्रयुक्त होती है और इस प्रकार नुकसान को कम करने बीम प्रोफाइल को बढ़ाने और कम्पेटिबिलिटी को अधिकतम करने के लिए सतह का आकार सामान्यतः बहुत उच्च इंजीनियरिंग सहनशीलता के लिए निर्मित होता है, एक आदर्श सतह किसी भी विचलन को कम करता है। इन विचलनों को सामान्यतः  इतना छोटा रखा जाता है कि उन्हें [[इंटरफेरोमीटर]] या [[ऑप्टिकल फ्लैट]] जैसे उपकरणों का उपयोग करके प्रकाश की [[तरंग दैर्ध्य]] में मापा जाता है और इस प्रकार सामान्यतः एक लेजर आउटपुट कपलर को λ/10 प्रकाश की तरंग दैर्ध्य का दसवां भाग या सहिष्णुता के लिए निर्मित किया जाता है।


*प्रतिबिंब
*प्रतिबिंब

Revision as of 13:06, 29 June 2023

लेजर के प्रमुख घटक:
  1. Active laser medium
  2. Laser pumping energy
  3. High reflector
  4. Output coupler
  5. Laser beam

आउटपुट युग्मक (ओसी) एक ऑप्टिकल रेसोनेटर यंत्र का घटक है, जो लेजर के इंट्राकैविटी बीम से प्रकाश के एक भाग को निकालने की अनुमति देता है। और इस प्रकार आउटपुट युग्मक में प्राय: आंशिक रूप से परावर्तक दर्पण होता है, जिससे इंट्राकैविटी किरणपुंज के एक निश्चित भाग में से होकर संचारित करने की अनुमति मिलती है। अन्य विधियों में केविटी के प्रत्येक छोर पर लगभग पूरी तरह से परावर्तक दर्पणों का उपयोग किया जाता है और इस प्रकार बीम का उत्सर्जन या तो एक दर्पण के केंद्र में ड्रिल किए गए एक छोटे छेद में केंद्रित करके या घूर्णन दर्पण प्रिज्म के उपयोग के माध्यम से पुनर्निर्देशित करके किया जाता है। अन्य ऑप्टिकल उपकरण जिसके कारण बीम एक निश्चित समय पर अंत दर्पणों में से एक को बायपास कर देता है।

पार्शियली रिफ्लेक्टिव दर्पण

डाई लेजर के लिए एक डाइइलेक्ट्रिक आउटपुट-कपलर। 550 एनएम पर केंद्रित, बाईं तस्वीर पीले प्रकाश के लिए अपनी उच्च परावर्तन और लाल और नीले प्रकाश के लिए उच्च संप्रेषण दिखाती है। सही तस्वीर यह दिखाती है कि यह लेजर बीम के 75% को दर्शाती है और 25% संचारित करती है, हालांकि दूर जाने की तुलना में पर्यवेक्षक की ओर बढ़ते समय बीम उज्जवल दिखाई देता है।
File:Outputcoupler.jpg
हीलियम-नियॉन लेजर का आउटपुट कपलर

एक आउटपुट कपलर के आकार में पार्शियली रूप से दिखाई देने वाला दर्पण होता है जिसे बीम स्प्लीटर कहा जाता है। दर्पण का परावर्तन और संप्रेषण का निर्धारण सामान्यतया लेज़र के माध्यम से निर्धारित किया जाता है। कुछ लेज़रों में पराबैंगनीकिरण बहुत कम होता है, इसलिए बीम को पर्याप्त लाभ के लिए माध्यम से कई दर्रे बनानी होती है। इस स्थिति में आउटपुट युग्मक 99% परावर्तक के रूप में उच्च हो सकता है, जो केविटी की बीम में केवल 1% का उपयोग करने के लिए संचारण करता है। अधिकांश ठोस-अवस्था वाले लेज़रों की तुलना में डाई लेजर का लाभ बहुत अधिक होता है, इसलिए बीम को अपने इष्टतम लाभ तक पहुँचने के लिए तरल से कुछ ही गुजरने की आवश्यकता होती है, इस प्रकार आउटपुट कपलर सामान्यतः लगभग 80% परावर्तक होता है। अन्य लोगों में, जैसे कि एक्साइमर लेजर, अनकोटेड ग्लास के 4% परावर्तनीयता एक पर्याप्त दर्पण प्रदान करती है, जो लगभग 96% इंट्राकैविटी बीम को प्रसारित करती है।

लेज़र दो या दो से अधिक दर्पणों के बीच परावर्तन (भौतिकी) प्रकाश द्वारा संचालित होते हैं, जिनके बीच एक सक्रिय लेज़र माध्यम होता है और इस प्रकार माध्यम उत्तेजित उत्सर्जन द्वारा प्रकाश को बढ़ाता है। जिससे की लेज़िंग होने के लिए सक्रिय माध्यम का लाभ लेज़र के कुल नुकसान से बड़ा होता है, जिसमें अवांछित प्रभाव जैसे अवशोषण (विद्युत चुम्बकीय विकिरण), बीम पथ के अतिरिक्त अन्य दिशाओं में उत्सर्जन और आउटपुट युग्मक के माध्यम से ऊर्जा का जानबूझकर रिलीज जैसे अवांछित प्रभाव के रूप में सम्मलित हैं। दूसरे शब्दों में, लेज़र को अटैन थ्रेसहोल्ड तक पहुँचना होता है।

आउटपुट युग्मक के तीन महत्वपूर्ण गुण होते है,

  • वक्रता की त्रिज्या
उच्च परावर्तक के आकार के साथ आउटपुट कपलर की सतह का आकार ऑप्टिकल केविटी की स्थिरता निर्धारित करता है। ऑप्टिकल केविटी के डिजाइन के आधार पर आउटपुट कपलर या तो फ्लैट या कर्व दर्पण के रूप में होता है और इस प्रकार वक्रता की त्रिज्या सामान्यतः तल, संकेंद्रित, कन्फोकल आदि के द्वारा निर्धारित की जाती है। केविटी के प्रकार केविटी के व्यास और लंबाई के साथ वांछित रूप में निर्धारित होता है, केविटी में सामना करने वाले आउटपुट कपलर का फेस आंशिक रूप से परावर्तक कोटिंग के साथ होता है। यह वह पक्ष है जो लेजर मोडल गुणों को आंशिक रूप से निर्धारित करता है। यदि यह आंतरिक सतह कर्वड रूप में होती है, तो बाहरी सतह भी कर्वड होनी चाहिए। यह ओसी को लेंस के रूप में कार्य करना बंद कर देता है। बाहरी सतह की वक्रता को एक संपार्श्विक लेजर आउटपुट देने के लिए डिज़ाइन किया जा सकता है। इस बाहरी सतह में सामान्यतः आउटपुट पावर को अधिकतम करने के लिए एक विरोधी प्रतिबिंब कोटिंग प्रयुक्त होती है और इस प्रकार नुकसान को कम करने बीम प्रोफाइल को बढ़ाने और कम्पेटिबिलिटी को अधिकतम करने के लिए सतह का आकार सामान्यतः बहुत उच्च इंजीनियरिंग सहनशीलता के लिए निर्मित होता है, एक आदर्श सतह किसी भी विचलन को कम करता है। इन विचलनों को सामान्यतः इतना छोटा रखा जाता है कि उन्हें इंटरफेरोमीटर या ऑप्टिकल फ्लैट जैसे उपकरणों का उपयोग करके प्रकाश की तरंग दैर्ध्य में मापा जाता है और इस प्रकार सामान्यतः एक लेजर आउटपुट कपलर को λ/10 प्रकाश की तरंग दैर्ध्य का दसवां भाग या सहिष्णुता के लिए निर्मित किया जाता है।
  • प्रतिबिंब
माध्यम के लाभ के आधार पर, ओसी को वापस प्रतिबिंबित करने के लिए आवश्यक प्रकाश की मात्रा व्यापक रूप से भिन्न हो सकती है। हीलियम-नियॉन लेज़रों को लेस करने के लिए लगभग 99% परावर्तक दर्पण की आवश्यकता होती है, जबकि नाइट्रोजन लेजर का अत्यधिक उच्च लाभ होता है (वे सुपररेडियंस हैं) और किसी OC (0% परावर्तक) की आवश्यकता नहीं होती है। किसी भी OC की परावर्तकता तरंग दैर्ध्य के साथ अलग-अलग होगी। धातु-लेपित दर्पणों में आमतौर पर व्यापक बैंडविड्थ पर अच्छी परावर्तकता होती है, लेकिन स्पेक्ट्रम के पूरे भाग को कवर नहीं कर सकता है। दृश्य श्रेणी में चांदी की 99.9% तक परावर्तकता होती है, लेकिन यह पराबैंगनी का एक खराब परावर्तक है। एल्युमिनियम अवरक्त अच्छी तरह से प्रतिबिंबित नहीं करता है, लेकिन निकट-यूवी के माध्यम से दृश्य सीमा से एक अच्छा परावर्तक है, जबकि सोना अवरक्त प्रकाश के लिए अत्यधिक परावर्तक है, लेकिन पीले से कम तरंग दैर्ध्य का एक खराब परावर्तक है। एक विशिष्ट तरंग दैर्ध्य के लिए डिज़ाइन किए जाने पर एक परावैद्युत दर्पण में ट्यूनिंग रेंज 10 एनएम जितनी कम हो सकती है, या ट्यून करने योग्य लेजर के लिए 100 एनएम तक फैले विस्तृत रेंज के साथ डिज़ाइन किया जा सकता है। इस कारण से OC के वर्णक्रमीय गुण महत्वपूर्ण हैंविचार करें जब एक लेजर केविटी को इकट्ठा किया जा रहा है।
  • संप्रेषण
दर्पण के सब्सट्रेट के रूप में प्रयुक्त सामग्री भी एक महत्वपूर्ण विचार है। अधिकांश चश्मे में निकटवर्ती यूवी से निकट आईआर तक अच्छी संप्रेषणीयता होती है, लेकिन कम या लंबी तरंग दैर्ध्य में निकलने वाले लेज़रों को एक अलग सब्सट्रेट की आवश्यकता हो सकती है। उदाहरण के लिए, जिंक सेलेनाइड का उपयोग आमतौर पर कार्बन डाइऑक्साइड लेजर में किया जाता है क्योंकि इसकी इन्फ्रारेड तरंगदैर्घ्य के लिए उच्च संप्रेषण होता है।

कैविटी डम्पर

कैविटी डम्पर एक आउटपुट कपलर है जो क्यू स्विच का कार्य करता है। यह ऊर्जा को ऑप्टिकल केविटी में बनाने की अनुमति देता है और फिर इसे एक विशेष समय अंतराल पर जारी करता है। यह बीम को उच्च स्तर तक निर्माण करने और फिर बहुत कम समय में जारी करने की अनुमति देता है; अक्सर समय के भीतर यह केविटी के माध्यम से एक चक्कर पूरा करने के लिए एक प्रकाश तरंग लेता है, इसलिए नाम। तीव्रता से निर्माण के बाद केविटी अचानक अपनी ऊर्जा को छोड़ देता है। कैविटी डम्पर आमतौर पर कैविटी के प्रत्येक छोर पर एक उच्च-परावर्तक दर्पण का उपयोग करते हैं, जिससे बीम को माध्यम से पूर्ण लाभ प्राप्त करने की अनुमति मिलती है। एक विशिष्ट अंतराल पर, पॉकेल्स सेल , एक ध्वनिक-ऑप्टिक न्यूनाधिक, या एक तेजी से घूमने वाले प्रिज्म या दर्पण जैसे उपकरण का उपयोग करके बीम को पुनर्निर्देशित किया जाता है। यह पुनर्निर्देशित बीम अंत दर्पण को बायपास करता है, जिससे एक बहुत शक्तिशाली नाड़ी उत्सर्जित होती है। कैविटी डम्पर का उपयोग निरंतर-तरंग संचालन के लिए किया जा सकता है, लेकिन उनका सबसे आम उपयोग मोड-लॉकिंग | मोड-लॉक्ड लेजर के साथ होता है, जो इसकी चरम तीव्रता पर बहुत कम पल्स निकालने के लिए होता है।[1]


यह भी देखें

संदर्भ

  1. Principles of Lasers by Orazio Svelto -- Springer 1998 Page 368