प्रेरण हटना फिटिंग: Difference between revisions
(Created page with "{{Refimprove|date=December 2018}} इंडक्शन श्रिंक फिटिंग का मतलब प्रेरण हीटर तकनीक के...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Refimprove|date=December 2018}} | {{Refimprove|date=December 2018}} | ||
इंडक्शन श्रिंक फिटिंग का मतलब [[ प्रेरण हीटर ]] तकनीक के इस्तेमाल से धातु के पुर्जों को प्री-हीट करना है {{convert|150|C|F|abbr=on}} और {{convert|300|C|F|abbr=on}} जिससे उनका विस्तार होता है और किसी अन्य घटक को डालने या हटाने की अनुमति मिलती है।<ref>Rudnev, p. 185.</ref> आम तौर पर कम तापमान सीमा का उपयोग धातुओं जैसे [[ अल्युमीनियम ]] पर किया जाता है और उच्च तापमान का उपयोग निम्न/मध्यम [[कार्बन स्टील्स]] जैसी धातुओं पर किया जाता है। घटकों को काम करने की इजाजत देने के दौरान प्रक्रिया यांत्रिक गुणों को बदलने से बचाती है। धातु आमतौर पर हीटिंग के जवाब में फैलते | इंडक्शन श्रिंक फिटिंग का मतलब [[ प्रेरण हीटर ]] तकनीक के इस्तेमाल से धातु के पुर्जों को प्री-हीट करना है {{convert|150|C|F|abbr=on}} और {{convert|300|C|F|abbr=on}} जिससे उनका विस्तार होता है और किसी अन्य घटक को डालने या हटाने की अनुमति मिलती है।<ref>Rudnev, p. 185.</ref> आम तौर पर कम तापमान सीमा का उपयोग धातुओं जैसे [[ अल्युमीनियम ]] पर किया जाता है और उच्च तापमान का उपयोग निम्न/मध्यम [[कार्बन स्टील्स]] जैसी धातुओं पर किया जाता है। घटकों को काम करने की इजाजत देने के दौरान प्रक्रिया यांत्रिक गुणों को बदलने से बचाती है। धातु आमतौर पर हीटिंग के जवाब में फैलते है और ठंडा होने पर सिकुड़ते है; तापमान परिवर्तन के लिए यह आयामी प्रतिक्रिया थर्मल विस्तार के गुणांक के रूप में व्यक्त की जाती है।<ref>Rudnev, p. 88.</ref> | ||
== प्रक्रिया == | == प्रक्रिया == | ||
[[ प्रेरण ऊष्मन ]] एक गैर संपर्क हीटिंग प्रक्रिया है जो वर्क-पीस में गर्मी पैदा करने के लिए इलेक्ट्रोमैग्नेटिज्म इंडक्शन के सिद्धांत का उपयोग करती है। इस मामले में [[थर्मल विस्तार]] का उपयोग एक यांत्रिक अनुप्रयोग में एक दूसरे के ऊपर भागों को फिट करने के लिए किया जाता है, उदा। शाफ्ट के व्यास की तुलना में इसके आंतरिक व्यास को थोड़ा छोटा करके शाफ्ट पर एक झाड़ी लगाई जा सकती है, फिर इसे शाफ्ट पर फिट होने तक गर्म किया जा सकता है, और इसे शाफ्ट पर धकेलने के बाद ठंडा होने दिया जाता है, इस प्रकार एक ' श्रिंक फ़िट'। एक प्रवाहकीय सामग्री को एक मजबूत वैकल्पिक [[चुंबकीय क्षेत्र]] में रखकर, [[विद्युत]] प्रवाह को धातु में प्रवाहित किया जा सकता है जिससे I के कारण गर्मी पैदा होती है<sup>2</sup> सामग्री में आर नुकसान। वर्तमान उत्पन्न प्रवाह मुख्य रूप से सतह परत में होता है। इस परत की गहराई वैकल्पिक क्षेत्र की आवृत्ति और सामग्री की [[पारगम्यता (विद्युत चुंबकत्व)]] द्वारा निर्धारित की जा रही है।<ref>Rudnev, p. 11.</ref> श्रिंक फिटिंग के लिए इंडक्शन हीटर दो व्यापक श्रेणियों में आते | [[ प्रेरण ऊष्मन ]] एक गैर संपर्क हीटिंग प्रक्रिया है जो वर्क-पीस में गर्मी पैदा करने के लिए इलेक्ट्रोमैग्नेटिज्म इंडक्शन के सिद्धांत का उपयोग करती है। इस मामले में [[थर्मल विस्तार]] का उपयोग एक यांत्रिक अनुप्रयोग में एक दूसरे के ऊपर भागों को फिट करने के लिए किया जाता है, उदा। शाफ्ट के व्यास की तुलना में इसके आंतरिक व्यास को थोड़ा छोटा करके शाफ्ट पर एक झाड़ी लगाई जा सकती है, फिर इसे शाफ्ट पर फिट होने तक गर्म किया जा सकता है, और इसे शाफ्ट पर धकेलने के बाद ठंडा होने दिया जाता है, इस प्रकार एक ' श्रिंक फ़िट'। एक प्रवाहकीय सामग्री को एक मजबूत वैकल्पिक [[चुंबकीय क्षेत्र]] में रखकर, [[विद्युत]] प्रवाह को धातु में प्रवाहित किया जा सकता है जिससे I के कारण गर्मी पैदा होती है<sup>2</sup> सामग्री में आर नुकसान। वर्तमान उत्पन्न प्रवाह मुख्य रूप से सतह परत में होता है। इस परत की गहराई वैकल्पिक क्षेत्र की आवृत्ति और सामग्री की [[पारगम्यता (विद्युत चुंबकत्व)]] द्वारा निर्धारित की जा रही है।<ref>Rudnev, p. 11.</ref> श्रिंक फिटिंग के लिए इंडक्शन हीटर दो व्यापक श्रेणियों में आते है: | ||
* [[चुंबकीय कोर]] (लौह) का उपयोग करते हुए मुख्य आवृत्ति (एमएफ) इकाइयां | * [[चुंबकीय कोर]] (लौह) का उपयोग करते हुए मुख्य आवृत्ति (एमएफ) इकाइयां | ||
Line 10: | Line 10: | ||
===आयरन कोर === का उपयोग करते हुए मुख्य आवृत्ति इकाइयां | ===आयरन कोर === का उपयोग करते हुए मुख्य आवृत्ति इकाइयां | ||
अक्सर एक असर हीटर के रूप में जाना जाता है, मुख्य आवृत्ति इकाई इसके संचालन के लिए मानक [[ट्रांसफार्मर]] सिद्धांतों को नियोजित करती है। एक मानक मेन ट्रांसफॉर्मर के समान एक लेमिनेटेड कोर के चारों ओर एक आंतरिक घुमाव लपेटा जाता है। इसके बाद कोर को वर्क-पीस के माध्यम से पारित किया जाता है और जब प्राथमिक कॉइल को सक्रिय किया जाता है, तो कोर के चारों ओर एक [[चुंबकीय प्रवाह]] बनाया जाता है। वर्क-पीस ट्रांसफॉर्मर के सेकेंडरी शॉर्ट सर्किट के रूप में कार्य करता है, और इंडक्शन के नियमों के कारण, वर्क-पीस में करंट प्रवाहित होता है और गर्मी उत्पन्न होती है। लोडिंग या अनलोडिंग की अनुमति देने के लिए कोर सामान्य रूप से किसी तरह से टिका या जकड़ा हुआ होता है, जो आमतौर पर एक मैनुअल ऑपरेशन होता है। आंशिक व्यास में विविधताओं को कवर करने के लिए, अधिकांश इकाइयों में अतिरिक्त कोर उपलब्ध होंगे जो प्रदर्शन को अनुकूलित करने में सहायता करते | अक्सर एक असर हीटर के रूप में जाना जाता है, मुख्य आवृत्ति इकाई इसके संचालन के लिए मानक [[ट्रांसफार्मर]] सिद्धांतों को नियोजित करती है। एक मानक मेन ट्रांसफॉर्मर के समान एक लेमिनेटेड कोर के चारों ओर एक आंतरिक घुमाव लपेटा जाता है। इसके बाद कोर को वर्क-पीस के माध्यम से पारित किया जाता है और जब प्राथमिक कॉइल को सक्रिय किया जाता है, तो कोर के चारों ओर एक [[चुंबकीय प्रवाह]] बनाया जाता है। वर्क-पीस ट्रांसफॉर्मर के सेकेंडरी शॉर्ट सर्किट के रूप में कार्य करता है, और इंडक्शन के नियमों के कारण, वर्क-पीस में करंट प्रवाहित होता है और गर्मी उत्पन्न होती है। लोडिंग या अनलोडिंग की अनुमति देने के लिए कोर सामान्य रूप से किसी तरह से टिका या जकड़ा हुआ होता है, जो आमतौर पर एक मैनुअल ऑपरेशन होता है। आंशिक व्यास में विविधताओं को कवर करने के लिए, अधिकांश इकाइयों में अतिरिक्त कोर उपलब्ध होंगे जो प्रदर्शन को अनुकूलित करने में सहायता करते है। एक बार भाग को सही तापमान पर गर्म करने के बाद, असेंबली हाथ से या संबंधित जिग या [[मशीन प्रेस]] में हो सकती है।<ref name="rudnev433">Rudnev, p. 433.</ref> | ||
==== बिजली की खपत ==== | ==== बिजली की खपत ==== | ||
बियरिंग हीटर आमतौर पर 1 केवीए से लेकर 25 केवीए तक होते | बियरिंग हीटर आमतौर पर 1 केवीए से लेकर 25 केवीए तक होते है और इनका उपयोग भागों को गर्म करने के लिए किया जाता है {{convert|1|to|650|kg|lb|abbr=on}}, आवेदन पर निर्भर। आवश्यक शक्ति वजन, लक्ष्य तापमान और चक्र समय का एक कार्य है, जिससे चयन में सहायता के लिए कई निर्माता ग्राफ़ और चार्ट प्रकाशित करते है। | ||
==== उद्योग और अनुप्रयोग ==== | ==== उद्योग और अनुप्रयोग ==== | ||
Line 22: | Line 22: | ||
* बिजली उत्पादन - विभिन्न जनरेटर घटक | * बिजली उत्पादन - विभिन्न जनरेटर घटक | ||
एक कोर डालने की आवश्यकता के कारण और यह भी कि प्रभावी होने के लिए, कोर को गर्म होने वाले हिस्से के बोर के अपेक्षाकृत निकट निकटता में होना चाहिए, ऐसे कई अनुप्रयोग | एक कोर डालने की आवश्यकता के कारण और यह भी कि प्रभावी होने के लिए, कोर को गर्म होने वाले हिस्से के बोर के अपेक्षाकृत निकट निकटता में होना चाहिए, ऐसे कई अनुप्रयोग है जिनमें उपरोक्त असर वाले हीटर प्रकार का दृष्टिकोण संभव नहीं है। | ||
=== ठोस राज्य एमएफ और आरएफ हीटर === | === ठोस राज्य एमएफ और आरएफ हीटर === | ||
ऐसे मामलों में जहां परिचालन संबंधी जटिलताएं कोरड मेन्स फ्रीक्वेंसी एप्रोच के उपयोग को नकारती | ऐसे मामलों में जहां परिचालन संबंधी जटिलताएं कोरड मेन्स फ्रीक्वेंसी एप्रोच के उपयोग को नकारती है, मानक आरएफ या एमएफ इंडक्शन हीटर का उपयोग किया जा सकता है। इस प्रकार की इकाई कॉपर ट्यूब के घाव को [[विद्युत चुम्बकीय कुंडल]] में बदल देती है।<ref name="rudnev91">Rudnev, p. 91.</ref> कोई कोर की आवश्यकता नहीं है, कॉइल को गर्म करने के लिए बस चारों ओर से घेरने या डालने की आवश्यकता होती है, इससे प्रक्रिया को सीधा करना स्वचालित हो जाता है। एक और फायदा न केवल फिट भागों को सिकोड़ने की क्षमता है बल्कि उन्हें हटाने की भी है। | ||
इंडक्शन श्रिंक फिटिंग के लिए उपयोग किए जाने वाले RF और MF हीटर कुछ [[किलोवाट]] से लेकर कई [[मेगावाट]] तक की शक्ति में भिन्न होते | इंडक्शन श्रिंक फिटिंग के लिए उपयोग किए जाने वाले RF और MF हीटर कुछ [[किलोवाट]] से लेकर कई [[मेगावाट]] तक की शक्ति में भिन्न होते है और घटक ज्यामिति/व्यास/क्रॉस सेक्शन के आधार पर आवृत्ति में 1 kHz से 200 kHz तक भिन्न हो सकते है, हालांकि अधिकांश एप्लिकेशन रेंज का उपयोग करते है 1 किलोहर्ट्ज़ और 100 किलोहर्ट्ज़ के बीच।<ref name="rudnev91"/> | ||
सामान्य शब्दों में, सबसे कम व्यावहारिक आवृत्ति और कम बिजली घनत्व का उपयोग करना सबसे अच्छा होता है जब फिटिंग को सिकोड़ते | सामान्य शब्दों में, सबसे कम व्यावहारिक आवृत्ति और कम बिजली घनत्व का उपयोग करना सबसे अच्छा होता है जब फिटिंग को सिकोड़ते है क्योंकि यह आम तौर पर अधिक समान रूप से वितरित गर्मी प्रदान करेगा। इस नियम का अपवाद तब होता है जब शाफ्ट से भागों को निकालने के लिए गर्मी का उपयोग किया जाता है। इन मामलों में घटक को तेज गर्मी से झटका देना सबसे अच्छा होता है, इससे समय चक्र को छोटा करने और शाफ्ट में गर्मी के निर्माण को रोकने का भी फायदा होता है जिससे दोनों भागों के विस्तार में समस्या हो सकती है। | ||
सही शक्ति का चयन करने के लिए पहले आवंटित समय में आवश्यक तापमान तक सामग्री को बढ़ाने के लिए आवश्यक तापीय ऊर्जा की गणना करना आवश्यक है। यह सामग्री की गर्मी सामग्री का उपयोग करके किया जा सकता है जो सामान्य रूप से kW घंटे प्रति टन में व्यक्त किया जाता है, संसाधित होने वाली धातु का वजन और समय चक्र।<ref>Rudnev, p. 22.</ref> एक बार यह स्थापित हो जाने के बाद अन्य कारक जैसे कि घटक से विकीर्ण नुकसान, कुंडल नुकसान और अन्य प्रणाली के नुकसान को शामिल करने की आवश्यकता होती है। परंपरागत रूप से इस प्रक्रिया में व्यावहारिक अनुभव और अनुभवजन्य सूत्र के मिश्रण के साथ लंबी और जटिल गणना शामिल होती है। आधुनिक तकनीकें परिमित तत्व विश्लेषण और अन्य कंप्यूटर-सहायता प्राप्त निर्माण तकनीकों का उपयोग करती | सही शक्ति का चयन करने के लिए पहले आवंटित समय में आवश्यक तापमान तक सामग्री को बढ़ाने के लिए आवश्यक तापीय ऊर्जा की गणना करना आवश्यक है। यह सामग्री की गर्मी सामग्री का उपयोग करके किया जा सकता है जो सामान्य रूप से kW घंटे प्रति टन में व्यक्त किया जाता है, संसाधित होने वाली धातु का वजन और समय चक्र।<ref>Rudnev, p. 22.</ref> एक बार यह स्थापित हो जाने के बाद अन्य कारक जैसे कि घटक से विकीर्ण नुकसान, कुंडल नुकसान और अन्य प्रणाली के नुकसान को शामिल करने की आवश्यकता होती है। परंपरागत रूप से इस प्रक्रिया में व्यावहारिक अनुभव और अनुभवजन्य सूत्र के मिश्रण के साथ लंबी और जटिल गणना शामिल होती है। आधुनिक तकनीकें परिमित तत्व विश्लेषण और अन्य कंप्यूटर-सहायता प्राप्त निर्माण तकनीकों का उपयोग करती है, हालांकि इस तरह के सभी तरीकों के साथ प्रेरण ताप प्रक्रिया का गहन कार्यसाधक ज्ञान अभी भी आवश्यक है। सही दृष्टिकोण का निर्णय लेते समय यह सुनिश्चित करने के लिए वर्क-पीस के समग्र आकार और तापीय चालकता और इसकी विस्तार विशेषताओं पर विचार करना अक्सर आवश्यक होता है ताकि यह सुनिश्चित किया जा सके कि पूरे घटक में एक समान गर्मी पैदा करने के लिए पर्याप्त समय सोखने की अनुमति है। | ||
==== आउटपुट फ्रीक्वेंसी ==== | ==== आउटपुट फ्रीक्वेंसी ==== | ||
Line 37: | Line 37: | ||
==== उद्योग और अनुप्रयोग ==== | ==== उद्योग और अनुप्रयोग ==== | ||
बड़ी संख्या में उद्योग और अनुप्रयोग | बड़ी संख्या में उद्योग और अनुप्रयोग है जो ठोस अवस्था RF और MF हीटरों का उपयोग करके इंडक्शन श्रिंक फिटिंग या रिमूवल से लाभान्वित होते है। व्यवहार में, नियोजित कार्यप्रणाली एक साधारण मैनुअल दृष्टिकोण से भिन्न हो सकती है जहां एक ऑपरेटर भागों को पूरी तरह से स्वचालित [[वायवीय]] और [[हाइड्रॉलिक प्रेस]] व्यवस्था के लिए इकट्ठा या अलग करता है।<ref>Rudnev, p. 434.</ref> | ||
* ऑटोमोटिव स्टार्टर [[चक्का]] पर बजता है | * ऑटोमोटिव स्टार्टर [[चक्का]] पर बजता है | ||
* [[ क्रैंक्शैफ्ट ]] के लिए टाइमिंग गियर | * [[ क्रैंक्शैफ्ट ]] के लिए टाइमिंग गियर |
Revision as of 17:46, 6 June 2023
This article needs additional citations for verification. (December 2018) (Learn how and when to remove this template message) |
इंडक्शन श्रिंक फिटिंग का मतलब प्रेरण हीटर तकनीक के इस्तेमाल से धातु के पुर्जों को प्री-हीट करना है 150 °C (302 °F) और 300 °C (572 °F) जिससे उनका विस्तार होता है और किसी अन्य घटक को डालने या हटाने की अनुमति मिलती है।[1] आम तौर पर कम तापमान सीमा का उपयोग धातुओं जैसे अल्युमीनियम पर किया जाता है और उच्च तापमान का उपयोग निम्न/मध्यम कार्बन स्टील्स जैसी धातुओं पर किया जाता है। घटकों को काम करने की इजाजत देने के दौरान प्रक्रिया यांत्रिक गुणों को बदलने से बचाती है। धातु आमतौर पर हीटिंग के जवाब में फैलते है और ठंडा होने पर सिकुड़ते है; तापमान परिवर्तन के लिए यह आयामी प्रतिक्रिया थर्मल विस्तार के गुणांक के रूप में व्यक्त की जाती है।[2]
प्रक्रिया
प्रेरण ऊष्मन एक गैर संपर्क हीटिंग प्रक्रिया है जो वर्क-पीस में गर्मी पैदा करने के लिए इलेक्ट्रोमैग्नेटिज्म इंडक्शन के सिद्धांत का उपयोग करती है। इस मामले में थर्मल विस्तार का उपयोग एक यांत्रिक अनुप्रयोग में एक दूसरे के ऊपर भागों को फिट करने के लिए किया जाता है, उदा। शाफ्ट के व्यास की तुलना में इसके आंतरिक व्यास को थोड़ा छोटा करके शाफ्ट पर एक झाड़ी लगाई जा सकती है, फिर इसे शाफ्ट पर फिट होने तक गर्म किया जा सकता है, और इसे शाफ्ट पर धकेलने के बाद ठंडा होने दिया जाता है, इस प्रकार एक ' श्रिंक फ़िट'। एक प्रवाहकीय सामग्री को एक मजबूत वैकल्पिक चुंबकीय क्षेत्र में रखकर, विद्युत प्रवाह को धातु में प्रवाहित किया जा सकता है जिससे I के कारण गर्मी पैदा होती है2 सामग्री में आर नुकसान। वर्तमान उत्पन्न प्रवाह मुख्य रूप से सतह परत में होता है। इस परत की गहराई वैकल्पिक क्षेत्र की आवृत्ति और सामग्री की पारगम्यता (विद्युत चुंबकत्व) द्वारा निर्धारित की जा रही है।[3] श्रिंक फिटिंग के लिए इंडक्शन हीटर दो व्यापक श्रेणियों में आते है:
- चुंबकीय कोर (लौह) का उपयोग करते हुए मुख्य आवृत्ति (एमएफ) इकाइयां
- ठोस अवस्था (इलेक्ट्रॉनिक्स) एमएफ और रेडियो फ्रीक्वेंसी (आरएफ) हीटर
===आयरन कोर === का उपयोग करते हुए मुख्य आवृत्ति इकाइयां अक्सर एक असर हीटर के रूप में जाना जाता है, मुख्य आवृत्ति इकाई इसके संचालन के लिए मानक ट्रांसफार्मर सिद्धांतों को नियोजित करती है। एक मानक मेन ट्रांसफॉर्मर के समान एक लेमिनेटेड कोर के चारों ओर एक आंतरिक घुमाव लपेटा जाता है। इसके बाद कोर को वर्क-पीस के माध्यम से पारित किया जाता है और जब प्राथमिक कॉइल को सक्रिय किया जाता है, तो कोर के चारों ओर एक चुंबकीय प्रवाह बनाया जाता है। वर्क-पीस ट्रांसफॉर्मर के सेकेंडरी शॉर्ट सर्किट के रूप में कार्य करता है, और इंडक्शन के नियमों के कारण, वर्क-पीस में करंट प्रवाहित होता है और गर्मी उत्पन्न होती है। लोडिंग या अनलोडिंग की अनुमति देने के लिए कोर सामान्य रूप से किसी तरह से टिका या जकड़ा हुआ होता है, जो आमतौर पर एक मैनुअल ऑपरेशन होता है। आंशिक व्यास में विविधताओं को कवर करने के लिए, अधिकांश इकाइयों में अतिरिक्त कोर उपलब्ध होंगे जो प्रदर्शन को अनुकूलित करने में सहायता करते है। एक बार भाग को सही तापमान पर गर्म करने के बाद, असेंबली हाथ से या संबंधित जिग या मशीन प्रेस में हो सकती है।[4]
बिजली की खपत
बियरिंग हीटर आमतौर पर 1 केवीए से लेकर 25 केवीए तक होते है और इनका उपयोग भागों को गर्म करने के लिए किया जाता है 1 to 650 kg (2.2 to 1,433.0 lb), आवेदन पर निर्भर। आवश्यक शक्ति वजन, लक्ष्य तापमान और चक्र समय का एक कार्य है, जिससे चयन में सहायता के लिए कई निर्माता ग्राफ़ और चार्ट प्रकाशित करते है।
उद्योग और अनुप्रयोग
- रेलवे - गियरबॉक्स, पहिए, प्रसारण
- मशीन टूल्स - खराद गियरबॉक्स, मिलें
- स्टील का काम - रोल बियरिंग्स, रोल नेक रिंग्स
- बिजली उत्पादन - विभिन्न जनरेटर घटक
एक कोर डालने की आवश्यकता के कारण और यह भी कि प्रभावी होने के लिए, कोर को गर्म होने वाले हिस्से के बोर के अपेक्षाकृत निकट निकटता में होना चाहिए, ऐसे कई अनुप्रयोग है जिनमें उपरोक्त असर वाले हीटर प्रकार का दृष्टिकोण संभव नहीं है।
ठोस राज्य एमएफ और आरएफ हीटर
ऐसे मामलों में जहां परिचालन संबंधी जटिलताएं कोरड मेन्स फ्रीक्वेंसी एप्रोच के उपयोग को नकारती है, मानक आरएफ या एमएफ इंडक्शन हीटर का उपयोग किया जा सकता है। इस प्रकार की इकाई कॉपर ट्यूब के घाव को विद्युत चुम्बकीय कुंडल में बदल देती है।[5] कोई कोर की आवश्यकता नहीं है, कॉइल को गर्म करने के लिए बस चारों ओर से घेरने या डालने की आवश्यकता होती है, इससे प्रक्रिया को सीधा करना स्वचालित हो जाता है। एक और फायदा न केवल फिट भागों को सिकोड़ने की क्षमता है बल्कि उन्हें हटाने की भी है।
इंडक्शन श्रिंक फिटिंग के लिए उपयोग किए जाने वाले RF और MF हीटर कुछ किलोवाट से लेकर कई मेगावाट तक की शक्ति में भिन्न होते है और घटक ज्यामिति/व्यास/क्रॉस सेक्शन के आधार पर आवृत्ति में 1 kHz से 200 kHz तक भिन्न हो सकते है, हालांकि अधिकांश एप्लिकेशन रेंज का उपयोग करते है 1 किलोहर्ट्ज़ और 100 किलोहर्ट्ज़ के बीच।[5]
सामान्य शब्दों में, सबसे कम व्यावहारिक आवृत्ति और कम बिजली घनत्व का उपयोग करना सबसे अच्छा होता है जब फिटिंग को सिकोड़ते है क्योंकि यह आम तौर पर अधिक समान रूप से वितरित गर्मी प्रदान करेगा। इस नियम का अपवाद तब होता है जब शाफ्ट से भागों को निकालने के लिए गर्मी का उपयोग किया जाता है। इन मामलों में घटक को तेज गर्मी से झटका देना सबसे अच्छा होता है, इससे समय चक्र को छोटा करने और शाफ्ट में गर्मी के निर्माण को रोकने का भी फायदा होता है जिससे दोनों भागों के विस्तार में समस्या हो सकती है।
सही शक्ति का चयन करने के लिए पहले आवंटित समय में आवश्यक तापमान तक सामग्री को बढ़ाने के लिए आवश्यक तापीय ऊर्जा की गणना करना आवश्यक है। यह सामग्री की गर्मी सामग्री का उपयोग करके किया जा सकता है जो सामान्य रूप से kW घंटे प्रति टन में व्यक्त किया जाता है, संसाधित होने वाली धातु का वजन और समय चक्र।[6] एक बार यह स्थापित हो जाने के बाद अन्य कारक जैसे कि घटक से विकीर्ण नुकसान, कुंडल नुकसान और अन्य प्रणाली के नुकसान को शामिल करने की आवश्यकता होती है। परंपरागत रूप से इस प्रक्रिया में व्यावहारिक अनुभव और अनुभवजन्य सूत्र के मिश्रण के साथ लंबी और जटिल गणना शामिल होती है। आधुनिक तकनीकें परिमित तत्व विश्लेषण और अन्य कंप्यूटर-सहायता प्राप्त निर्माण तकनीकों का उपयोग करती है, हालांकि इस तरह के सभी तरीकों के साथ प्रेरण ताप प्रक्रिया का गहन कार्यसाधक ज्ञान अभी भी आवश्यक है। सही दृष्टिकोण का निर्णय लेते समय यह सुनिश्चित करने के लिए वर्क-पीस के समग्र आकार और तापीय चालकता और इसकी विस्तार विशेषताओं पर विचार करना अक्सर आवश्यक होता है ताकि यह सुनिश्चित किया जा सके कि पूरे घटक में एक समान गर्मी पैदा करने के लिए पर्याप्त समय सोखने की अनुमति है।
आउटपुट फ्रीक्वेंसी
चूंकि सिकुड़ने वाली फिटिंग को विस्तारित करने के लिए घटक के एक समान ताप की आवश्यकता होती है, इसलिए सिकुड़ने वाली फिटिंग के लिए हीटिंग के लिए सबसे कम व्यावहारिक आवृत्ति का उपयोग करने का प्रयास करना सबसे अच्छा है। शाफ्ट से भागों को हटाते समय फिर से इस नियम का अपवाद हो सकता है।
उद्योग और अनुप्रयोग
बड़ी संख्या में उद्योग और अनुप्रयोग है जो ठोस अवस्था RF और MF हीटरों का उपयोग करके इंडक्शन श्रिंक फिटिंग या रिमूवल से लाभान्वित होते है। व्यवहार में, नियोजित कार्यप्रणाली एक साधारण मैनुअल दृष्टिकोण से भिन्न हो सकती है जहां एक ऑपरेटर भागों को पूरी तरह से स्वचालित वायवीय और हाइड्रॉलिक प्रेस व्यवस्था के लिए इकट्ठा या अलग करता है।[7]
- ऑटोमोटिव स्टार्टर चक्का पर बजता है
- क्रैंक्शैफ्ट के लिए टाइमिंग गियर
- मोटर स्टेटर मोटर निकायों में
- स्टेटर में मोटर शाफ्ट
- गैस टर्बाइन प्ररित करनेवाला को हटाना और फिर से लगाना
- विद्युत जनित्रों में खोखले बोल्टों को हटाना और पुनः लगाना
- उच्च परिशुद्धता रोलर बीयरिंग की विधानसभा
- जहाज के इंजन के लिए 2-स्ट्रोक क्रैंकशाफ्ट की फिटिंग को सिकोड़ें
फायदे और नुकसान
लाभ:
- प्रक्रिया नियंत्रणीयता - एक पारंपरिक इलेक्ट्रिक या धातुकर्म भट्ठी के विपरीत प्रेरण प्रणाली को प्री-हीट चक्र या नियंत्रित शटडाउन की आवश्यकता नहीं होती है। गर्मी मांग पर उपलब्ध है। उत्पादन में डाउनस्ट्रीम रुकावट की स्थिति में तेजी से उपलब्धता के लाभों के अलावा, बिजली को स्विच ऑफ किया जा सकता है जिससे ऊर्जा की बचत होती है।
- ऊर्जा दक्षता - घटक ऊर्जा हस्तांतरण के भीतर उत्पन्न होने वाली गर्मी के कारण अत्यंत कुशल है। इंडक्शन हीटर केवल भाग को गर्म करता है न कि उसके आसपास के वातावरण को।
- प्रोसेस कंसिस्टेंसी - इंडक्शन हीटिंग प्रोसेस बेहद एकसमान लगातार हीट पैदा करता है, यह अक्सर किसी दिए गए प्रोसेस के लिए कम हीट का इस्तेमाल करने की अनुमति देता है।
- कोई नग्न लौ नहीं - यह विशेष रूप से पेट्रोकेमिकल अनुप्रयोगों में अस्थिर वातावरण में विभिन्न प्रकार के अनुप्रयोगों में प्रेरण हीटिंग का उपयोग करने की अनुमति देता है।
इस प्रक्रिया का मुख्य नुकसान यह है कि, सामान्य तौर पर, यह उन घटकों तक सीमित है जिनका आकार बेलनाकार होता है।[4]
यह भी देखें
- प्रेरण सख्त
- प्रेरण फोर्जिंग
- इंडक्शन हीटर
संदर्भ
टिप्पणियाँ
ग्रन्थसूची
- Davies, John; Simpson, Peter (1979), Induction Heating Handbook, McGraw-Hill, ISBN 0-07-084515-8.
- Rapoport, Edgar; Pleshivtseva, Yulia (2006), Optimal Control of Induction Heating Processes, CRC Press, ISBN 0-8493-3754-2.
- Rudnev, Valery; Loveless, Don; Cook, Raymond; Black, Micah (2002), Handbook of Induction Heating, CRC Press, ISBN 0-8247-0848-2.