क्रमपरिवर्तन आव्यूह: Difference between revisions
(j,) |
(M) |
||
Line 23: | Line 23: | ||
|} | |} | ||
--> | --> | ||
गणित में, विशेष रूप से [[मैट्रिक्स (गणित)|आव्यूह (गणित) सिद्धांत]] में, एक '''क्रमपरिवर्तन आव्यूह''' एक वर्ग [[बाइनरी मैट्रिक्स|बाइनरी आव्यूह]] होता है जिसमें प्रत्येक पंक्ति और प्रत्येक स्तंभ में 1 की एक प्रविष्टि होती है 0s और अन्यत्र {{mvar|P}}, होता है। ऐसा प्रत्येक आव्यूह,के {{mvar|m}} तत्व क्रमचय का प्रतिनिधित्व करता है और, जब किसी अन्य आव्यूह को गुणा करने के लिए उपयोग किया जाता है, तो कहते हैं {{mvar|A}}, पंक्तियों को अनुमति देने के परिणाम (जब पूर्व-गुणा करते हैं, बनाने के लिए {{mvar|PA}}) या स्तंभ (गुणा करने के बाद, बनाने के लिए {{mvar|AP}}) आव्यूह का {{mvar|A}}. | गणित में, विशेष रूप से [[मैट्रिक्स (गणित)|आव्यूह (गणित) सिद्धांत]] में, एक '''क्रमपरिवर्तन आव्यूह''' एक वर्ग [[बाइनरी मैट्रिक्स|बाइनरी आव्यूह]] होता है जिसमें प्रत्येक पंक्ति और प्रत्येक स्तंभ में 1 की एक प्रविष्टि होती है 0s और अन्यत्र {{mvar|P}}, होता है। ऐसा प्रत्येक आव्यूह,के {{mvar|m}} तत्व क्रमचय का प्रतिनिधित्व करता है और, जब किसी अन्य आव्यूह को गुणा करने के लिए उपयोग किया जाता है, तो कहते हैं {{mvar|A}}, पंक्तियों को अनुमति देने के परिणाम (जब पूर्व-गुणा करते हैं, बनाने के लिए {{mvar|PA}}) या स्तंभ (गुणा करने के बाद, बनाने के लिए {{mvar|AP}}) आव्यूह का {{mvar|A}}.होता है। | ||
== परिभाषा == | == परिभाषा == | ||
Line 71: | Line 71: | ||
एक क्रमचय आव्यूह का स्तंभ प्रतिनिधित्व इस खंड में उपयोग किया जाता है, सिवाय इसके कि जब अन्यथा इंगित किया गया हो। | एक क्रमचय आव्यूह का स्तंभ प्रतिनिधित्व इस खंड में उपयोग किया जाता है, सिवाय इसके कि जब अन्यथा इंगित किया गया हो। | ||
गुणा <math>P_{\pi}</math> बार एक [[कॉलम वेक्टर|स्तंभ वेक्टर]] जी वेक्टर की पंक्तियों को क्रमबद्ध करेगा: | गुणा <math>P_{\pi}</math> बार एक [[कॉलम वेक्टर|स्तंभ वेक्टर]] जी वेक्टर की पंक्तियों को क्रमबद्ध करेगा: | ||
<math display=block>P_\pi \mathbf{g} | <math display=block>P_\pi \mathbf{g} | ||
= | = | ||
Line 95: | Line 95: | ||
\end{bmatrix}. | \end{bmatrix}. | ||
</math> | </math> | ||
इस परिणाम के बार-बार प्रयोग से पता चलता है कि यदि {{mvar|M}} उचित आकार का आव्यूह है, उत्पाद, <math>P_{\pi} M</math> की पंक्तियों का एक क्रमचय मात्र है {{mvar|M}}. हालाँकि, यह देखते हुए | इस परिणाम के बार-बार प्रयोग से पता चलता है कि यदि {{mvar|M}} उचित आकार का आव्यूह है, उत्पाद, <math>P_{\pi} M</math> की पंक्तियों का एक क्रमचय मात्र है {{mvar|M}}. हालाँकि, यह देखते हुए | ||
<math display=block>P_{\pi} \mathbf{e}_k^{\mathsf T} = \mathbf{e}_{\pi^{-1} (k)}^{\mathsf T}</math> | <math display=block>P_{\pi} \mathbf{e}_k^{\mathsf T} = \mathbf{e}_{\pi^{-1} (k)}^{\mathsf T}</math> | ||
प्रत्येक के लिए {{mvar|k}} दिखाता है कि पंक्तियों का क्रमपरिवर्तन किसके द्वारा दिया गया है {{pi}}<sup>-1</sup>. (<math>M^{\mathsf T}</math> आव्यूह का [[ट्रांसपोज़ मैट्रिक्स|ट्रांसपोज़ आव्यूह]] है {{mvar|M}}.) | प्रत्येक के लिए {{mvar|k}} दिखाता है कि पंक्तियों का क्रमपरिवर्तन किसके द्वारा दिया गया है {{pi}}<sup>-1</sup>. (<math>M^{\mathsf T}</math> आव्यूह का [[ट्रांसपोज़ मैट्रिक्स|ट्रांसपोज़ आव्यूह]] है {{mvar|M}}.) | ||
क्रमचय | क्रमचय आव्यूह [[ऑर्थोगोनल मैट्रिक्स|ऑर्थोगोनल आव्यूह]] हैं (अर्थात, <math>P_{\pi}P_{\pi}^{\mathsf T} = I</math>), उलटा आव्यूह उपस्थित है और इसे लिखा जा सकता है | ||
<math display=block>P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{\mathsf T}.</math> | <math display=block>P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{\mathsf T}.</math> | ||
पंक्ति सदिश h को गुणा करना <math>P_{\pi}</math> वेक्टर के स्तंभ को अनुमति देगा: | पंक्ति सदिश h को गुणा करना <math>P_{\pi}</math> वेक्टर के स्तंभ को अनुमति देगा: | ||
Line 114: | Line 114: | ||
\begin{bmatrix} h_{\pi^{-1}(1)} & h_{\pi^{-1}(2)} & \cdots & h_{\pi^{-1}(n)} \end{bmatrix} | \begin{bmatrix} h_{\pi^{-1}(1)} & h_{\pi^{-1}(2)} & \cdots & h_{\pi^{-1}(n)} \end{bmatrix} | ||
</math> | </math> | ||
दोबारा, इस परिणाम के बार-बार आवेदन से पता चलता है कि एक आव्यूह को बाद में गुणा करना {{mvar|M}} क्रमपरिवर्तन आव्यूह द्वारा {{math|''P''<sub>π</sub>}}, वह है, {{math|''M P''<sub>π</sub>}}, के स्तंभों को अनुमति देने का परिणाम है {{mvar|M}}. यह भी ध्यान दें | दोबारा, इस परिणाम के बार-बार आवेदन से पता चलता है कि एक आव्यूह को बाद में गुणा करना {{mvar|M}} क्रमपरिवर्तन आव्यूह द्वारा {{math|''P''<sub>π</sub>}}, वह है, {{math|''M P''<sub>π</sub>}}, के स्तंभों को अनुमति देने का परिणाम है {{mvar|M}}. यह भी ध्यान दें<math display=block>\mathbf{e}_k P_{\pi} = \mathbf{e}_{\pi (k)}.</math> | ||
<math display=block>\mathbf{e}_k P_{\pi} = \mathbf{e}_{\pi (k)}.</math> | |||
दो क्रमपरिवर्तन | |||
<math display=block>P_{\sigma} P_{\pi}\, \mathbf{g} = P_{\pi\,\circ\,\sigma}\, \mathbf{g}. </math> | {{math|''m''}} तत्व के दो क्रमपरिवर्तन {{pi}} और {{math|σ}} को देखते हुए, संबंधित क्रमचय आव्यूह {{math|''P''<sub>π</sub>}} और {{math|''P''<sub>σ</sub>}} स्तंभ सदिशों पर क्रिया करने वाले निम्नलिखित से बने होते हैं<math display="block">P_{\sigma} P_{\pi}\, \mathbf{g} = P_{\pi\,\circ\,\sigma}\, \mathbf{g}. </math> | ||
पंक्ति सदिशों (अर्थात्, गुणन के बाद) पर कार्य करने वाले समान आव्यूह समान नियम के अनुसार रचना करते हैं | पंक्ति सदिशों (अर्थात्, गुणन के बाद) पर कार्य करने वाले समान आव्यूह समान नियम के अनुसार रचना करते हैं | ||
<math display=block> \mathbf{h} P_{\sigma} P_{\pi} = \mathbf{h} P_{\pi\,\circ\,\sigma}. </math> | <math display=block> \mathbf{h} P_{\sigma} P_{\pi} = \mathbf{h} P_{\pi\,\circ\,\sigma}. </math> | ||
स्पष्ट होने के लिए, उपरोक्त सूत्र क्रमचय रचना के लिए उपसर्ग संकेतन का उपयोग करते हैं, अर्थात, | स्पष्ट होने के लिए, उपरोक्त सूत्र क्रमचय रचना के लिए उपसर्ग संकेतन का उपयोग करते हैं, अर्थात, | ||
<math display=block>(\pi\,\circ\,\sigma) (k) = \pi \left(\sigma (k) \right).</math> | <math display=block>(\pi\,\circ\,\sigma) (k) = \pi \left(\sigma (k) \right).</math> | ||
<math>Q_{\pi}</math> के अनुरूप क्रमचय आव्यूह होने देना {{pi}} इसके पंक्ति प्रतिनिधित्व में। इस प्रतिनिधित्व के गुण तब से स्तंभ प्रतिनिधित्व के गुणों से निर्धारित किए जा सकते हैं <math>Q_{\pi} = P_{\pi}^{\mathsf T} = P_{{\pi}^{-1}}.</math> विशेष रूप से, | |||
<math display=block>Q_{\pi} \mathbf{e}_k^{\mathsf T} = P_{{\pi}^{-1}} \mathbf{e}_k^{\mathsf T} = \mathbf{e}_{(\pi^{-1})^{-1} (k)}^{\mathsf T} = \mathbf{e}_{\pi (k)}^{\mathsf T}.</math> | <math display=block>Q_{\pi} \mathbf{e}_k^{\mathsf T} = P_{{\pi}^{-1}} \mathbf{e}_k^{\mathsf T} = \mathbf{e}_{(\pi^{-1})^{-1} (k)}^{\mathsf T} = \mathbf{e}_{\pi (k)}^{\mathsf T}.</math> | ||
इससे यह अनुसरण करता है | इससे यह अनुसरण करता है | ||
Line 128: | Line 128: | ||
इसी प्रकार, | इसी प्रकार, | ||
<math display=block>\mathbf{h}\, Q_{\sigma} Q_{\pi} = \mathbf{h}\, Q_{\sigma\,\circ\,\pi}.</math> | <math display=block>\mathbf{h}\, Q_{\sigma} Q_{\pi} = \mathbf{h}\, Q_{\sigma\,\circ\,\pi}.</math> | ||
क्रमचय | क्रमचय आव्यूह [[ऑर्थोगोनल मेट्रिसेस|ऑर्थोगोनल आव्यूह]] के रूप में [[विशेषता (गणित)]] हो सकते हैं जिनकी प्रविष्टियाँ सभी गैर-ऋणात्मक हैं।<ref>{{cite journal |last1=Zavlanos |first1=Michael M. |last2=Pappas |first2=George J. |date=November 2008 |title=भारित ग्राफ मिलान के लिए एक गतिशील प्रणाली दृष्टिकोण|url=https://www.sciencedirect.com/science/article/abs/pii/S0005109808002616 |journal=Automatica |volume=44 |issue=11 |pages=2817–2824 |doi=10.1016/j.automatica.2008.04.009 |s2cid=834305 |access-date=21 August 2022 |quote=In particular, since permutation matrices are orthogonal matrices with nonnegative elements, we define two gradient flows in the space of orthogonal matrices... Lemma 5: Let <math>O_n</math> denote the set of <math>n \times n</math> orthogonal matrices and <math>N_n</math> denote the set of <math>n \times n</math> element-wise non-negative matrices. Then, <math>P_n = O_n \cap N_n</math>, where <math>P_n</math> is the set of <math>n \times n</math> permutation matrices.}}</ref> | ||
Line 136: | Line 136: | ||
होने देना {{math|''S<sub>n</sub>''}} {1,2,..., पर [[सममित समूह]], या [[क्रमपरिवर्तन समूह]] को दर्शाता है।{{math|''n''}}}. क्योंकि वहां हैं {{math|''n''!}} क्रमचय हैं {{math|''n''!}} क्रमपरिवर्तन आव्यूह। उपरोक्त सूत्रों के अनुसार, {{math|''n'' × ''n''}} क्रमचय आव्यूह [[पहचान तत्व]] के रूप में पहचान आव्यूह के साथ आव्यूह गुणा के तहत एक [[समूह (गणित)]] बनाते हैं। | होने देना {{math|''S<sub>n</sub>''}} {1,2,..., पर [[सममित समूह]], या [[क्रमपरिवर्तन समूह]] को दर्शाता है।{{math|''n''}}}. क्योंकि वहां हैं {{math|''n''!}} क्रमचय हैं {{math|''n''!}} क्रमपरिवर्तन आव्यूह। उपरोक्त सूत्रों के अनुसार, {{math|''n'' × ''n''}} क्रमचय आव्यूह [[पहचान तत्व]] के रूप में पहचान आव्यूह के साथ आव्यूह गुणा के तहत एक [[समूह (गणित)]] बनाते हैं। | ||
वो नक्शा {{math|''S''<sub>''n''</sub> → GL(''n'', '''Z'''<sub>2</sub>)}} जो अपने स्तंभ प्रतिनिधित्व में क्रमचय भेजता है वह एक | वो नक्शा {{math|''S''<sub>''n''</sub> → GL(''n'', '''Z'''<sub>2</sub>)}} जो अपने स्तंभ प्रतिनिधित्व में क्रमचय भेजता है वह एक दृढ़ प्रतिनिधित्व है। | ||
== दोगुना | == दोगुना प्रसंभाव्य आव्यूह == | ||
एक क्रमपरिवर्तन आव्यूह अपने आप में एक [[दोगुना स्टोकेस्टिक मैट्रिक्स|दोगुना | एक क्रमपरिवर्तन आव्यूह अपने आप में एक [[दोगुना स्टोकेस्टिक मैट्रिक्स|दोगुना प्रसंभाव्य आव्यूह]] है, लेकिन यह इन आव्यूह के सिद्धांत में एक विशेष भूमिका भी निभाता है। बिरखॉफ-वॉन न्यूमैन प्रमेय का कहना है कि प्रत्येक दोगुना प्रसंभाव्य वास्तविक आव्यूह एक ही क्रम के क्रमपरिवर्तन मैट्रिसेस का [[उत्तल संयोजन]] है और क्रमपरिवर्तन मैट्रिसेस दोगुनी स्टोचैस्टिक आव्यूह के सेट के [[चरम बिंदु]] हैं। यही है, [[बिरखॉफ पॉलीटॉप]], डबल प्रसंभाव्य आव्यूह का सेट, क्रमपरिवर्तन आव्यूह के सेट का उत्तल पतवार है।<ref name=Bru19>Brualdi (2006) p.19</ref> | ||
== रैखिक बीजगणितीय गुण == | == रैखिक बीजगणितीय गुण == | ||
क्रमपरिवर्तन आव्यूह का [[ट्रेस (रैखिक बीजगणित)]] क्रमपरिवर्तन के [[निश्चित बिंदु (गणित)]] की संख्या है। यदि क्रमपरिवर्तन के निश्चित बिंदु हैं, तो इसे चक्र रूप में लिखा जा सकता है {{math|1=π = (''a''<sub>1</sub>)(''a''<sub>2</sub>)...(''a''<sub>''k''</sub>)σ}} जहां {{mvar|σ}} का कोई निश्चित बिंदु नहीं है {{math|'''''e'''''<sub>''a''<sub>1</sub></sub>,'''''e'''''<sub>''a''<sub>2</sub></sub>,...,'''''e'''''<sub>''a''<sub>''k''</sub></sub>}} क्रमचय आव्यूह के [[ | क्रमपरिवर्तन आव्यूह का [[ट्रेस (रैखिक बीजगणित)]] क्रमपरिवर्तन के [[निश्चित बिंदु (गणित)]] की संख्या है। यदि क्रमपरिवर्तन के निश्चित बिंदु हैं, तो इसे चक्र रूप में लिखा जा सकता है {{math|1=π = (''a''<sub>1</sub>)(''a''<sub>2</sub>)...(''a''<sub>''k''</sub>)σ}} जहां {{mvar|σ}} का कोई निश्चित बिंदु नहीं है {{math|'''''e'''''<sub>''a''<sub>1</sub></sub>,'''''e'''''<sub>''a''<sub>2</sub></sub>,...,'''''e'''''<sub>''a''<sub>''k''</sub></sub>}} क्रमचय आव्यूह के [[इगनवेक्टर]] हैं। | ||
एक क्रमचय आव्यूह के [[eigenvalue]] | एक क्रमचय आव्यूह के [[eigenvalue|इगनवेल्यूज़]] की गणना करने के लिए <math>P_{\sigma}</math>, लिखना <math>\sigma</math> चक्रीय क्रमचय के उत्पाद के रूप में, कहते हैं, <math>\sigma= C_{1}C_{2} \cdots C_{t}</math>. माना कि इन चक्रों की संगत लंबाइयाँ हैं <math>l_{1},l_{2}...l_{t}</math>, और जाने <math>R_{i} (1 \le i \le t)</math> के जटिल समाधानों का समुच्चय हो <math>x^{l_{i}}=1</math>. सबका मिलन <math>R_{i}</math>s संबंधित क्रमचय आव्यूह के इगनवेल्यूज़ का सेट है। प्रत्येक इगनवेल्यूज़ की [[ज्यामितीय बहुलता]] की संख्या के बराबर होती है <math>R_{i}</math>इसमें यह शामिल है।<ref name=J_Najnudel2010_4> नजनुदेल, ए नीकेघबली 2010 पृष्ठ.4</ref> | ||
[[समूह सिद्धांत]] से हम जानते हैं कि किसी भी क्रमचय को [[स्थानान्तरण (गणित)]] के गुणनफल के रूप में लिखा जा सकता है। इसलिए, कोई भी क्रमपरिवर्तन आव्यूह {{math|''P''}} पंक्ति-विनिमेय [[प्राथमिक मैट्रिक्स|प्राथमिक आव्यूह]] के उत्पाद के रूप में कारक, प्रत्येक में निर्धारक -1 है। इस प्रकार, एक क्रमपरिवर्तन आव्यूह का निर्धारक {{math|''P''}} संबंधित क्रमचय के क्रमपरिवर्तन का हस्ताक्षर है। | [[समूह सिद्धांत]] से हम जानते हैं कि किसी भी क्रमचय को [[स्थानान्तरण (गणित)]] के गुणनफल के रूप में लिखा जा सकता है। इसलिए, कोई भी क्रमपरिवर्तन आव्यूह {{math|''P''}} पंक्ति-विनिमेय [[प्राथमिक मैट्रिक्स|प्राथमिक आव्यूह]] के उत्पाद के रूप में कारक, प्रत्येक में निर्धारक -1 है। इस प्रकार, एक क्रमपरिवर्तन आव्यूह का निर्धारक {{math|''P''}} संबंधित क्रमचय के क्रमपरिवर्तन का हस्ताक्षर है। | ||
Line 154: | Line 154: | ||
=== पंक्तियों और स्तंभों का क्रमपरिवर्तन === | === पंक्तियों और स्तंभों का क्रमपरिवर्तन === | ||
जब एक आव्यूह M को पीएम बनाने के लिए बाईं ओर एक क्रमचय आव्यूह P से गुणा किया जाता है, तो उत्पाद M की पंक्तियों को क्रमबद्ध करने का परिणाम होता है। | जब एक आव्यूह M को पीएम बनाने के लिए बाईं ओर एक क्रमचय आव्यूह P से गुणा किया जाता है, तो उत्पाद M की पंक्तियों को क्रमबद्ध करने का परिणाम होता है। विशेष स्थिति के रूप में, यदि M एक स्तंभ वेक्टर है, तो PM क्रमपरिवर्तन का परिणाम है M की प्रविष्टियाँ: | ||
{|style="text-align: center; width: 100%;" | {|style="text-align: center; width: 100%;" | ||
|[[File:Permutation matrix; P * column.svg|thumb|center|180px|''P'' · (1, 2, 3, 4)<sup>T</sup> = (4, 1, 3, 2)<sup>T</sup>]] | |[[File:Permutation matrix; P * column.svg|thumb|center|180px|''P'' · (1, 2, 3, 4)<sup>T</sup> = (4, 1, 3, 2)<sup>T</sup>]] | ||
|} | |} | ||
इसके बजाय जब | इसके बजाय जब M को एमपी बनाने के अधिकार पर क्रमपरिवर्तन आव्यूह से गुणा किया जाता है, तो उत्पाद एम के स्तंभ को अनुमति देने का परिणाम होता है। एक विशेष स्थिति के रूप में, यदि एम एक पंक्ति वेक्टर है, तो एमपी की प्रविष्टियों को अनुमति देने का परिणाम है M: | ||
{|style="text-align: center; width: 100%;" | {|style="text-align: center; width: 100%;" | ||
|[[File:Permutation matrix; row * P.svg|thumb|center|257px|(1, 2, 3, 4) · ''P'' = (2, 4, 3, 1)]] | |[[File:Permutation matrix; row * P.svg|thumb|center|257px|(1, 2, 3, 4) · ''P'' = (2, 4, 3, 1)]] |
Revision as of 16:44, 14 June 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (अगस्त 2022) (Learn how and when to remove this template message) |
गणित में, विशेष रूप से आव्यूह (गणित) सिद्धांत में, एक क्रमपरिवर्तन आव्यूह एक वर्ग बाइनरी आव्यूह होता है जिसमें प्रत्येक पंक्ति और प्रत्येक स्तंभ में 1 की एक प्रविष्टि होती है 0s और अन्यत्र P, होता है। ऐसा प्रत्येक आव्यूह,के m तत्व क्रमचय का प्रतिनिधित्व करता है और, जब किसी अन्य आव्यूह को गुणा करने के लिए उपयोग किया जाता है, तो कहते हैं A, पंक्तियों को अनुमति देने के परिणाम (जब पूर्व-गुणा करते हैं, बनाने के लिए PA) या स्तंभ (गुणा करने के बाद, बनाने के लिए AP) आव्यूह का A.होता है।
परिभाषा
m तत्वों के क्रमपरिवर्तन π को देखते हुए,
दो-पंक्ति रूप द्वारा दर्शाया गया है
क्रमचय को क्रमचय आव्यूह के साथ जोड़ने के दो प्राकृतिक तरीके हैं; अर्थात्, m × m तत्समक आव्यूह से प्रारंभ करते हुए, Im, के अनुसार या तो स्तंभों को क्रमबद्ध करें या पंक्तियों को क्रमबद्ध करें π. क्रमचय आव्यूहों को परिभाषित करने की दोनों विधियाँ साहित्य में दिखाई देती हैं और एक निरूपण में अभिव्यक्त गुणों को आसानी से दूसरे निरूपण में परिवर्तित किया जा सकता है। यह लेख मुख्य रूप से इनमें से केवल एक अभ्यावेदन से निपटेगा और दूसरे का उल्लेख केवल तभी किया जाएगा जब जागरूक होने के लिए कोई अंतर हो।
m × m क्रमपरिवर्तन आव्यूह Pπ = (pij) पहचान आव्यूह के स्तंभों को अनुमति देकर प्राप्त किया गया Im, यानी प्रत्येक i के लिए, pij = 1 if j = π(i) और pij = 0 अन्यथा, इस आलेख में स्तंभ प्रतिनिधित्व के रूप में संदर्भित किया जाएगा।[1] चूंकि पंक्ति में प्रविष्टियां सभी 0 हैं इसके सिवाय स्तंभ में 1 दिखाई देता है π(i), हम लिख सकते हैं
जहां , मानक आधार सदिश, लंबाई m के एक पंक्ति सदिश को दर्शाता है जिसमें 1 j स्थान पर और 0 प्रत्येक अन्य स्थिति में है।[2] उदाहरण के लिए, क्रमपरिवर्तन आव्यूह Pπ क्रमपरिवर्तन के अनुरूप है
ध्यान दें कि I5 पहचान आव्यूह का jth स्तंभ अब Pπ.के π(j)th स्तंभ के रूप में प्रकट होता है।
पहचान आव्यूह Im, की पंक्तियों को अनुमति देकर प्राप्त अन्य प्रतिनिधित्वयानी प्रत्येक j के लिए, pij = 1 अगर Im = π( j,) और pij = 0 अन्यथा, पंक्ति प्रतिनिधित्व के रूप में संदर्भित किया जाएगा।
गुण
एक क्रमचय आव्यूह का स्तंभ प्रतिनिधित्व इस खंड में उपयोग किया जाता है, सिवाय इसके कि जब अन्यथा इंगित किया गया हो।
गुणा बार एक स्तंभ वेक्टर जी वेक्टर की पंक्तियों को क्रमबद्ध करेगा:
क्रमचय आव्यूह ऑर्थोगोनल आव्यूह हैं (अर्थात, ), उलटा आव्यूह उपस्थित है और इसे लिखा जा सकता है
m तत्व के दो क्रमपरिवर्तन π और σ को देखते हुए, संबंधित क्रमचय आव्यूह Pπ और Pσ स्तंभ सदिशों पर क्रिया करने वाले निम्नलिखित से बने होते हैं
इसी प्रकार,
आव्यूह समूह
यदि (1) तत्समक क्रमचय को दर्शाता है, तब P(1) पहचान आव्यूह है।
होने देना Sn {1,2,..., पर सममित समूह, या क्रमपरिवर्तन समूह को दर्शाता है।n}. क्योंकि वहां हैं n! क्रमचय हैं n! क्रमपरिवर्तन आव्यूह। उपरोक्त सूत्रों के अनुसार, n × n क्रमचय आव्यूह पहचान तत्व के रूप में पहचान आव्यूह के साथ आव्यूह गुणा के तहत एक समूह (गणित) बनाते हैं।
वो नक्शा Sn → GL(n, Z2) जो अपने स्तंभ प्रतिनिधित्व में क्रमचय भेजता है वह एक दृढ़ प्रतिनिधित्व है।
दोगुना प्रसंभाव्य आव्यूह
एक क्रमपरिवर्तन आव्यूह अपने आप में एक दोगुना प्रसंभाव्य आव्यूह है, लेकिन यह इन आव्यूह के सिद्धांत में एक विशेष भूमिका भी निभाता है। बिरखॉफ-वॉन न्यूमैन प्रमेय का कहना है कि प्रत्येक दोगुना प्रसंभाव्य वास्तविक आव्यूह एक ही क्रम के क्रमपरिवर्तन मैट्रिसेस का उत्तल संयोजन है और क्रमपरिवर्तन मैट्रिसेस दोगुनी स्टोचैस्टिक आव्यूह के सेट के चरम बिंदु हैं। यही है, बिरखॉफ पॉलीटॉप, डबल प्रसंभाव्य आव्यूह का सेट, क्रमपरिवर्तन आव्यूह के सेट का उत्तल पतवार है।[4]
रैखिक बीजगणितीय गुण
क्रमपरिवर्तन आव्यूह का ट्रेस (रैखिक बीजगणित) क्रमपरिवर्तन के निश्चित बिंदु (गणित) की संख्या है। यदि क्रमपरिवर्तन के निश्चित बिंदु हैं, तो इसे चक्र रूप में लिखा जा सकता है π = (a1)(a2)...(ak)σ जहां σ का कोई निश्चित बिंदु नहीं है ea1,ea2,...,eak क्रमचय आव्यूह के इगनवेक्टर हैं।
एक क्रमचय आव्यूह के इगनवेल्यूज़ की गणना करने के लिए , लिखना चक्रीय क्रमचय के उत्पाद के रूप में, कहते हैं, . माना कि इन चक्रों की संगत लंबाइयाँ हैं , और जाने के जटिल समाधानों का समुच्चय हो . सबका मिलन s संबंधित क्रमचय आव्यूह के इगनवेल्यूज़ का सेट है। प्रत्येक इगनवेल्यूज़ की ज्यामितीय बहुलता की संख्या के बराबर होती है इसमें यह शामिल है।[5]
समूह सिद्धांत से हम जानते हैं कि किसी भी क्रमचय को स्थानान्तरण (गणित) के गुणनफल के रूप में लिखा जा सकता है। इसलिए, कोई भी क्रमपरिवर्तन आव्यूह P पंक्ति-विनिमेय प्राथमिक आव्यूह के उत्पाद के रूप में कारक, प्रत्येक में निर्धारक -1 है। इस प्रकार, एक क्रमपरिवर्तन आव्यूह का निर्धारक P संबंधित क्रमचय के क्रमपरिवर्तन का हस्ताक्षर है।
उदाहरण
पंक्तियों और स्तंभों का क्रमपरिवर्तन
जब एक आव्यूह M को पीएम बनाने के लिए बाईं ओर एक क्रमचय आव्यूह P से गुणा किया जाता है, तो उत्पाद M की पंक्तियों को क्रमबद्ध करने का परिणाम होता है। विशेष स्थिति के रूप में, यदि M एक स्तंभ वेक्टर है, तो PM क्रमपरिवर्तन का परिणाम है M की प्रविष्टियाँ:
इसके बजाय जब M को एमपी बनाने के अधिकार पर क्रमपरिवर्तन आव्यूह से गुणा किया जाता है, तो उत्पाद एम के स्तंभ को अनुमति देने का परिणाम होता है। एक विशेष स्थिति के रूप में, यदि एम एक पंक्ति वेक्टर है, तो एमपी की प्रविष्टियों को अनुमति देने का परिणाम है M:
पंक्तियों का क्रमपरिवर्तन
क्रमपरिवर्तन आव्यूह पीπ क्रमपरिवर्तन के अनुरूप है
सदिश g दिया है,
स्पष्टीकरण
एक क्रमपरिवर्तन आव्यूह हमेशा रूप में रहेगा
जहां ईai 'R' के लिए iवें आधार वेक्टर (एक पंक्ति के रूप में) का प्रतिनिधित्व करता हैj, और जहां
क्रमपरिवर्तन आव्यूह का क्रमचय रूप है।
अब, आव्यूह गुणन करने में, अनिवार्य रूप से दूसरे के प्रत्येक स्तंभ के साथ पहली आव्यूह की प्रत्येक पंक्ति का डॉट उत्पाद बनता है। इस उदाहरण में, हम इस आव्यूह की प्रत्येक पंक्ति के डॉट उत्पाद को उन तत्वों के वेक्टर के साथ बनाएंगे जिन्हें हम परमिट करना चाहते हैं। यानी, उदाहरण के लिए, v = (g0,...,जी5)टी</सुप>,
- इai·में = उहai</उप>
तो, ऊपर दिए गए वेक्टर v के साथ क्रमचय आव्यूह का गुणनफल, (g) के रूप में एक वेक्टर होगा उप>ए1</ उप>, जीa2</ उप>, ..., जीaj), और यह तब v का क्रमपरिवर्तन है क्योंकि हमने कहा है कि क्रमचय रूप है
तो, क्रमचय आव्यूह वास्तव में उनके साथ गुणा किए गए वैक्टरों में तत्वों के क्रम को क्रमबद्ध करते हैं।
प्रतिबंधित रूप
- कोस्टास सरणी, एक क्रमचय आव्यूह जिसमें प्रविष्टियों के बीच विस्थापन वैक्टर सभी अलग हैं
- आठ रानी पहेली|एन-रानी पहेली, एक क्रमपरिवर्तन आव्यूह जिसमें प्रत्येक विकर्ण और प्रतिविकर्ण में अधिकतम एक प्रविष्टि होती है
यह भी देखें
संदर्भ
- ↑ Terminology is not standard. Most authors choose one representation to be consistent with other notation they have introduced, so there is generally no need to supply a name.
- ↑ Brualdi (2006) p.2
- ↑ Zavlanos, Michael M.; Pappas, George J. (November 2008). "भारित ग्राफ मिलान के लिए एक गतिशील प्रणाली दृष्टिकोण". Automatica. 44 (11): 2817–2824. doi:10.1016/j.automatica.2008.04.009. S2CID 834305. Retrieved 21 August 2022.
In particular, since permutation matrices are orthogonal matrices with nonnegative elements, we define two gradient flows in the space of orthogonal matrices... Lemma 5: Let denote the set of orthogonal matrices and denote the set of element-wise non-negative matrices. Then, , where is the set of permutation matrices.
- ↑ Brualdi (2006) p.19
- ↑ नजनुदेल, ए नीकेघबली 2010 पृष्ठ.4
- Brualdi, Richard A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications. Vol. 108. Cambridge: Cambridge University Press. ISBN 0-521-86565-4. Zbl 1106.05001.
- Joseph, Najnudel; Ashkan, Nikeghbali (2010), The Distribution of Eigenvalues of Randomized Permutation Matrices, arXiv:1005.0402, Bibcode:2010arXiv1005.0402N