डिरिचलेट L-फलन: Difference between revisions

From Vigyanwiki
No edit summary
(No difference)

Revision as of 13:57, 7 July 2023


गणित में, डिरिचलेट L-श्रृंखला फॉर्म का एक फंक्शन (फलन) है।

जहां डिरिचलेट वर्ण है और जटिल चर है जिसका वास्तविक भाग 1 से अधिक है। यह डिरिचलेट श्रृंखला का एक विशेष स्तिथि है। विश्लेषणात्मक निरंतरता द्वारा, इसे पूरे जटिल समतल पर मेरोमोर्फिक फंक्शन तक बढ़ाया जा सकता है और फिर इसे डिरिचलेट L-फंक्शन कहा जाता है और L(s, χ) भी दर्शाया जाता है।

इन फ़ंक्शंस का नाम पीटर गुस्ताव लेज्यून डिरिचलेट के नाम पर रखा गया है जिन्होंने अंकगणितीय प्रगति में अभाज्य पर प्रमेय को साबित करने के लिए इन्हें (डिरिचलेट 1837) में पेश किया था जिसमें उनका नाम भी सम्मिलित है। प्रमाण के क्रम में, डिरिचलेट दर्शाता है कि s = 1 पर L(s, χ) गैर-शून्य है। इसके अलावा, यदि χ प्रिंसिपल है, तो संबंधित डिरिचलेट L-फंक्शन में s = 1 पर एक सरल ध्रुव होता है। अन्यथा, L-फंक्शन संपूर्ण होता है।

यूलर गुणनफल

चूँकि डिरिचलेट वर्ण χ पूरी तरह से गुणक है, इसलिए इसका L-फंक्शन पूर्ण अभिसरण के आधे-तल में यूलर गुणनफल के रूप में भी लिखा जा सकता है:

जहां गुणनफल सभी अभाज्य संख्याओं से अधिक है।[1]

अभाज्य गुण

L-फंक्शन के बारे में परिणाम प्रायः अधिक सरलता से बताए जाते हैं यदि गुण को अभाज्य माना जाता है, हालांकि परिणाम सामान्यतः छोटी जटिलताओं के साथ अप्रभावी गुणों तक बढ़ाए जा सकते हैं।[2] इसका कारण अभाज्य गुण के बीच का संबंध है और अभाज्य गुण मैं जो इसे प्रेरित करता है:[3]

(यहाँ, q χ का मापांक है।) यूलर गुणनफल का अनुप्रयोग संबंधित L-फंक्शन के बीच सरल संबंध देता है:[4][5]

(यह सूत्र विश्लेषणात्मक निरंतरता द्वारा सभी s के लिए मान्य है, भले ही यूलर गुणनफल केवल तभी मान्य है जब Re(s) > 1.)  सूत्र से पता चलता है कि χ का L-फंक्शन आदिम चरित्र के L-फंक्शन के बराबर है जो χ को प्रेरित करता है, केवल सीमित संख्या में कारकों से गुणा किया जाता है।[6]

विशेष स्तिथि के रूप में, मुख्य गुण का L-फंक्शन मॉड्यूलो क्यू को रीमैन ज़ेटा फंक्शन के संदर्भ में व्यक्त किया जा सकता है:[7][8]

फलनीयसमीकरण

डिरिचलेट L-फंक्शन फलनीयसमीकरण को संतुष्ट करते हैं, जो उन्हें पूरे जटिल समतल में विश्लेषणात्मक रूप से प्रवृत्त रखने की विधि प्रदान करता है। फलनीयसमीकरण के मान को के मान से संबंधित करता है। मान लीजिए कि χ अभाज्य गुण मॉड्यूलो q है, जहां q > 1. फलनीयसमीकरण को व्यक्त करने की एक विधि है:[9]

इस समीकरण में, Γ गामा फंक्शन को दर्शाता है; a 0 है यदि χ(−1) = 1,या 1 यदि χ(−1) = −1; और

जहां τ ( χ) एक गॉस योग है:

यह गॉस योग की एक गुण है जो |τ ( χ) | = q1/2, so |ɛ ( χ) | = 1.[10][11]

फलनीयसमीकरण को ज्ञात करने की दूसरी विधि है:

फलनीयसमीकरण को इस प्रकार व्यक्त किया जा सकता है:[9][11]:

फलनीयसमीकरण का तात्पर्य यह है (और ) s का संपूर्ण फंक्शन है। (फिर से, यह माना जाता है कि χ q > 1 के साथ अभाज्य गुण मॉड्यूलो q है।

यदि q = 1 है, तो s = 1 पर एक ध्रुव है।)[9][11]

सामान्यीकरण के लिए, देखें: फलनीयसमीकरण (L-फंक्शन)

शून्य

डिरिचलेट L-फंक्शन एल(एस, χ) = 1 − 3−s+5−s − 7−s + ⋅⋅⋅ (कभी-कभी विशेष नाम डिरिचलेट बीटा फंक्शन दिया जाता है), ऋणात्मक विषम पूर्णांकों पर तुच्छ शून्य के साथ

मान लीजिए χ q > 1 के साथ अभाज्य गुण मॉड्यूल q है।

Re(s) > 1 के साथ L(s, χ) के फंक्शन का कोई शून्य नहीं है। Re(s) < 0 के लिए, कुछ ऋणात्मक पूर्णांक s पर शून्य होते हैं:

  • यदि χ(−1) = 1, तो Re(s) < 0 के साथ L(s, χ) के एकमात्र शून्य −2, −4, −6, ... पर साधारण शून्य हैं। (s = 0 पर भी शून्य होता है।) ये के ध्रुवों के अनुरूप हैं।[12]
  • यदि χ(−1) = 1, तो Re(s) < 0 के साथ L(s, χ) के एकमात्र शून्य −1, −3, −5, .... पर साधारण शून्य हैं। (s = 0 पर भी शून्य होता है।) ये के ध्रुवों के अनुरूप हैं।[12]

इन्हें नगण्य शून्य कहा जाता है।[9]

शेष शून्य क्रांतिक पट्टी 0 ≤ Re(s) ≤ 1 में स्थित होते हैं और इन्हें गैर-नगण्य शून्य कहा जाता है। गैर-नगण्य शून्य महत्वपूर्ण रेखा Re(s) = 1/2 के बारे में सममित हैं। अर्थात्, यदि तो कार्यात्मक समीकरण के कारण भी। यदि χ वास्तविक गुण है, तो गैर-नगण्य शून्य भी वास्तविक अक्ष के बारे में सममित हैं, लेकिन यदि χ जटिल गुण है तो नहीं। सामान्यीकृत रीमैन परिकल्पना यह अनुमान है कि सभी गैर-तुच्छ शून्य महत्वपूर्ण रेखा Re(s) = 1/2 पर स्थित हैं।[9]

सीगल शून्य के संभावित अस्तित्व तक, रीमैन ज़ेटा फंक्शन के समान रेखा Re(s) = 1 सहित और उससे परे शून्य-मुक्त क्षेत्र सभी डिरिचलेट एल-फ़ंक्शंस के लिए उपस्थित हैं: उदाहरण के लिए, χ के लिए हमारे पास मापांक q का गैर-वास्तविक गुण है

β + iγ के लिए अवास्तविक शून्य।[13]

हर्विट्ज़ ज़ेटा फंक्शन से संबंध

डिरिचलेट L-फंक्शन को तर्कसंगत मूल्यों पर हर्विट्ज़ ज़ेटा फंक्शन के रैखिक संयोजन के रूप में लिखा जा सकता है। पूर्णांक k ≥ 1 को निश्चित करते हुए, मॉड्यूल k वर्णों के लिए डिरिचलेट L-फंक्शन ζ(s,a) के स्थिर गुणांकों के साथ रैखिक संयोजन हैं, जहां a = r/k और r = 1, 2, ..., k . इसका मतलब यह है कि तर्कसंगत ए के लिए हर्विट्ज़ ज़ेटा फंक्शन में विश्लेषणात्मक गुण हैं जो डिरिचलेट L-फंक्शन से निकटता से संबंधित हैं। विशेष रूप से, मान लीजिए कि χ वर्ण मॉड्यूलो k है। तब हम इसके डिरिचलेट L-फंक्शन को इस प्रकार लिख सकते हैं:[14]


यह भी देखें

टिप्पणियाँ

  1. Apostol 1976, Theorem 11.7
  2. Davenport 2000, chapter 5
  3. Davenport 2000, chapter 5, equation (2)
  4. Davenport 2000, chapter 5, equation (3)
  5. Montgomery & Vaughan 2006, p. 282
  6. Apostol 1976, p. 262
  7. Ireland & Rosen 1990, chapter 16, section 4
  8. Montgomery & Vaughan 2006, p. 121
  9. 9.0 9.1 9.2 9.3 9.4 Montgomery & Vaughan 2006, p. 333
  10. Montgomery & Vaughan 2006, p. 332
  11. 11.0 11.1 11.2 Iwaniec & Kowalski 2004, p. 84
  12. 12.0 12.1 Davenport 2000, chapter 9
  13. Montgomery, Hugh L. (1994). विश्लेषणात्मक संख्या सिद्धांत और हार्मोनिक विश्लेषण के बीच इंटरफेस पर दस व्याख्यान. Regional Conference Series in Mathematics. Vol. 84. Providence, RI: American Mathematical Society. p. 163. ISBN 0-8218-0737-4. Zbl 0814.11001.
  14. Apostol 1976, p. 249


संदर्भ