आरोही श्रृंखला स्थिति: Difference between revisions
(Created page with "गणित में, आरोही श्रृंखला स्थिति (एसीसी) और अवरोही श्रृंखला स्थिति (...") |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, आरोही श्रृंखला स्थिति (एसीसी) और अवरोही श्रृंखला स्थिति (डीसीसी) कुछ | गणित में, '''आरोही श्रृंखला स्थिति (एसीसी)''' और '''अवरोही श्रृंखला स्थिति (डीसीसी)''' कुछ बीजीय संरचनाओं द्वारा संतुष्ट परिमितता गुण हैं, सबसे महत्वपूर्ण रूप से कुछ क्रमविनिमेय वलय में आदर्श।<ref>Hazewinkel, Gubareni & Kirichenko (2004), p.6, Prop. 1.1.4.</ref><ref>Fraleigh & Katz (1967), p. 366, Lemma 7.1</ref><ref>Jacobson (2009), p. 142 and 147</ref> इन स्थितियों ने [[डेविड हिल्बर्ट]], एम्मी नोएथर और [[एमिल आर्टिन]] के कार्यों में क्रमविनिमेय वलय के संरचना सिद्धांत के विकास में महत्वपूर्ण भूमिका निभाई। शर्तों को स्वयं एक अमूर्त रूप में बताया जा सकता है ताकि वे किसी भी आंशिक रूप से ऑर्डर किए गए सेट के लिए समझ में आ सकें। गेब्रियल और रेंटस्लर के कारण यह दृष्टिकोण अमूर्त बीजीय आयाम सिद्धांत में उपयोगी है। | ||
शर्तों को स्वयं एक अमूर्त रूप में बताया जा सकता है | |||
== परिभाषा == | == परिभाषा == | ||
आंशिक रूप से क्रमबद्ध सेट ( | आंशिक रूप से क्रमबद्ध सेट (पॉसेट) ''P'' को आरोही श्रृंखला स्थिति (एसीसी) को संतुष्ट करने के लिए कहा जाता है यदि कोई अनंत सख्ती से आरोही अनुक्रम नहीं है। | ||
:<math>a_1 < a_2 < a_3 < \cdots</math> | :<math>a_1 < a_2 < a_3 < \cdots</math> | ||
P के | ''P'' के अवयवों का अस्तित्व है।<ref name="Hazewinkel">{{cite book| last = Hazewinkel| first = Michiel| title = गणित का विश्वकोश| publisher = Kluwer| isbn = 1-55608-010-7 | page = 580 }}</ref> समान रूप से, प्रत्येक आरोही क्रम | ||
:<math>a_1 \leq a_2 \leq a_3 \leq \cdots,</math> | :<math>a_1 \leq a_2 \leq a_3 \leq \cdots,</math> | ||
P के | ''P'' के अवयवों की संख्या अंततः स्थिर हो जाती है, जिसका अर्थ है कि एक धनात्मक पूर्णांक n उपस्थित है। | ||
:<math>a_n = a_{n+1} = a_{n+2} = \cdots.</math> | :<math>a_n = a_{n+1} = a_{n+2} = \cdots.</math> | ||
इसी प्रकार, यदि P के | इसी प्रकार, यदि ''P'' के अवयवों की कोई [[अनंत अवरोही श्रृंखला]] नहीं है, तो ''P'' को अवरोही श्रृंखला स्थिति (डीसीसी) को संतुष्ट करने वाला कहा जाता है।<ref name="Hazewinkel"/> समान रूप से, प्रत्येक अशक्त अवरोही क्रम | ||
:<math>a_1 \geq a_2 \geq a_3 \geq \cdots</math> | :<math>a_1 \geq a_2 \geq a_3 \geq \cdots</math> | ||
P के | ''P'' के अवयवों का अंतत: स्थिरीकरण होता है। | ||
=== टिप्पणियाँ === | === टिप्पणियाँ === |
Revision as of 10:20, 6 July 2023
गणित में, आरोही श्रृंखला स्थिति (एसीसी) और अवरोही श्रृंखला स्थिति (डीसीसी) कुछ बीजीय संरचनाओं द्वारा संतुष्ट परिमितता गुण हैं, सबसे महत्वपूर्ण रूप से कुछ क्रमविनिमेय वलय में आदर्श।[1][2][3] इन स्थितियों ने डेविड हिल्बर्ट, एम्मी नोएथर और एमिल आर्टिन के कार्यों में क्रमविनिमेय वलय के संरचना सिद्धांत के विकास में महत्वपूर्ण भूमिका निभाई। शर्तों को स्वयं एक अमूर्त रूप में बताया जा सकता है ताकि वे किसी भी आंशिक रूप से ऑर्डर किए गए सेट के लिए समझ में आ सकें। गेब्रियल और रेंटस्लर के कारण यह दृष्टिकोण अमूर्त बीजीय आयाम सिद्धांत में उपयोगी है।
परिभाषा
आंशिक रूप से क्रमबद्ध सेट (पॉसेट) P को आरोही श्रृंखला स्थिति (एसीसी) को संतुष्ट करने के लिए कहा जाता है यदि कोई अनंत सख्ती से आरोही अनुक्रम नहीं है।
P के अवयवों का अस्तित्व है।[4] समान रूप से, प्रत्येक आरोही क्रम
P के अवयवों की संख्या अंततः स्थिर हो जाती है, जिसका अर्थ है कि एक धनात्मक पूर्णांक n उपस्थित है।
इसी प्रकार, यदि P के अवयवों की कोई अनंत अवरोही श्रृंखला नहीं है, तो P को अवरोही श्रृंखला स्थिति (डीसीसी) को संतुष्ट करने वाला कहा जाता है।[4] समान रूप से, प्रत्येक अशक्त अवरोही क्रम
P के अवयवों का अंतत: स्थिरीकरण होता है।
टिप्पणियाँ
- आश्रित विकल्प के सिद्धांत को मानते हुए, (संभवतः अनंत) पॉसेट पी पर अवरोही श्रृंखला की स्थिति पी के बराबर है जो अच्छी तरह से स्थापित है: पी के प्रत्येक गैर-रिक्त उपसमुच्चय में एक न्यूनतम तत्व होता है (जिसे 'न्यूनतम स्थिति' या 'न्यूनतम स्थिति' भी कहा जाता है) ). एक कुल ऑर्डर जो अच्छी तरह से स्थापित होता है वह एक सुव्यवस्थित | सुव्यवस्थित सेट होता है।
- इसी तरह, आरोही श्रृंखला की स्थिति पी के विपरीत अच्छी तरह से स्थापित होने के बराबर है (फिर से, आश्रित विकल्प मानते हुए): पी के प्रत्येक गैर-रिक्त उपसमुच्चय में एक अधिकतम तत्व ('अधिकतम स्थिति' या 'अधिकतम स्थिति') होता है।
- प्रत्येक परिमित स्थिति आरोही और अवरोही दोनों श्रृंखला स्थितियों को संतुष्ट करती है, और इस प्रकार दोनों अच्छी तरह से स्थापित और उलटा अच्छी तरह से स्थापित है।
उदाहरण
अंगूठी पर विचार करें
पूर्णांकों का. प्रत्येक आदर्श किसी संख्या के सभी गुणजों से मिलकर बनता है . उदाहरण के लिए, आदर्श
के सभी गुणजों से मिलकर बना है . होने देना
के सभी गुणजों से युक्त आदर्श बनें . आदर्श आदर्श के अंदर समाहित है , प्रत्येक गुणज के बाद से का गुणज भी है . बदले में, आदर्श आदर्श में निहित है , प्रत्येक गुणज के बाद से का गुणज है . हालाँकि, इस बिंदु पर कोई बड़ा आदर्श नहीं है; हम शीर्ष पर हैं .
सामान्य तौर पर, यदि के आदर्श हैं ऐसा है कि में निहित है , में निहित है , और इसी तरह, फिर कुछ है जिसके लिए सभी . अर्थात् एक समय के बाद सभी आदर्श एक-दूसरे के बराबर हो जाते हैं। इसलिए, के आदर्श आरोही श्रृंखला स्थिति को संतुष्ट करें, जहां आदर्शों को सेट समावेशन द्वारा क्रमबद्ध किया जाता है। इस तरह एक नोथेरियन अंगूठी है.
यह भी देखें
- आर्टिनियन (बहुविकल्पी)
- प्रमुख आदर्शों के लिए आरोही श्रृंखला स्थिति
- क्रुल आयाम
- सर्वांगसमताओं पर अधिकतम स्थिति
- नोथेरियन
टिप्पणियाँ
संदर्भ
- Atiyah, M. F., and I. G. MacDonald, Introduction to Commutative Algebra, Perseus Books, 1969, ISBN 0-201-00361-9
- Michiel Hazewinkel, Nadiya Gubareni, V. V. Kirichenko. Algebras, rings and modules. Kluwer Academic Publishers, 2004. ISBN 1-4020-2690-0
- John B. Fraleigh, Victor J. Katz. A first course in abstract algebra. Addison-Wesley Publishing Company. 5 ed., 1967. ISBN 0-201-53467-3
- Nathan Jacobson. Basic Algebra I. Dover, 2009. ISBN 978-0-486-47189-1