क्रमित प्रारूप: Difference between revisions

From Vigyanwiki
No edit summary
Line 8: Line 8:
चूँकि क्रम-समतुल्यता [[समतुल्य संबंध]] है, यह सभी क्रमबद्ध सम्मुचयो के [[वर्ग (सेट सिद्धांत)]] को समतुल्य वर्गों में विभाजित करता है।
चूँकि क्रम-समतुल्यता [[समतुल्य संबंध]] है, यह सभी क्रमबद्ध सम्मुचयो के [[वर्ग (सेट सिद्धांत)]] को समतुल्य वर्गों में विभाजित करता है।


==अच्छी तरह से ऑर्डर का प्रकार==
==सुव्यवस्थित क्रम प्रारूप ==
[[File:OrderTypeExamples svg.svg|thumb|400px|अलग-अलग क्रम प्रकारों (ऊपर से नीचे) के साथ प्राकृतिक संख्याओं के सेट पर तीन सुव्यवस्थित क्रम: <math>\omega</math>, <math>\omega+5</math>, और <math>\omega+\omega</math>.]]परिभाषा के अनुसार प्रत्येक [[सुव्यवस्थित सेट]] ठीक एक [[क्रमसूचक संख्या (गणित)]] के बराबर होता है। क्रमसूचक संख्याओं को उनकी कक्षाओं का विहित रूप माना जाता है, और इसलिए एक सुव्यवस्थित सेट के क्रम प्रकार को आमतौर पर संबंधित क्रमसूचक के साथ पहचाना जाता है। उदाहरण के लिए, प्राकृत संख्याओं के समुच्चय का क्रम प्रकार है {{mvar|[[ω (ordinal number)|ω]]}}.
[[File:OrderTypeExamples svg.svg|thumb|400px|अलग-अलग क्रम प्रारूपों (ऊपर से नीचे) के साथ प्राकृतिक संख्याओं के समुच्चय पर तीन सुव्यवस्थित क्रम: <math>\omega</math>, <math>\omega+5</math>, और <math>\omega+\omega</math>]]परिभाषा के अनुसार प्रत्येक [[सुव्यवस्थित सेट|सुव्यवस्थित समुच्चय]] ठीक [[क्रमसूचक संख्या (गणित)]] के बराबर होता है। क्रमसूचक संख्याओं को उनकी कक्षाओं का विहित रूप माना जाता है, और इसलिए सुव्यवस्थित समुच्चय के क्रम प्रारूप को साधारणतया संबंधित क्रमसूचक के साथ पहचाना जाता है। उदाहरण के लिए, प्राकृत संख्याओं के समुच्चय का क्रम प्रकार {{mvar|[[ω (ordinal number)|ω]]}} हैं।


सुव्यवस्थित सेट का ऑर्डर प्रकार {{mvar|V}} को कभी-कभी इस रूप में व्यक्त किया जाता है {{math|ord(''V'')}}.<ref>{{Cite web |url=http://www.sjsu.edu/faculty/watkins/ordinals.htm |title=Ordinal Numbers and Their Arithmetic<!-- Bot generated title --> |access-date=2007-06-13 |archive-date=2009-10-27 |archive-url=https://web.archive.org/web/20091027100631/http://www.sjsu.edu/faculty/watkins/ordinals.htm |url-status=dead }}</ref>
सुव्यवस्थित समुच्चय का क्रम प्रारूप {{mvar|V}} को कभी-कभी {{math|ord(''V'')}}<ref>{{Cite web |url=http://www.sjsu.edu/faculty/watkins/ordinals.htm |title=Ordinal Numbers and Their Arithmetic<!-- Bot generated title --> |access-date=2007-06-13 |archive-date=2009-10-27 |archive-url=https://web.archive.org/web/20091027100631/http://www.sjsu.edu/faculty/watkins/ordinals.htm |url-status=dead }}</ref> के रूप में व्यक्त किया जाता हैं।
उदाहरण के लिए, सेट पर विचार करें {{mvar|V}} सम क्रमादेशों से भी कम {{math|''ω'' &sdot; 2 + 7}}:
 
उदाहरण के लिए, समुच्चय पर विचार करें {{mvar|V}} सम क्रमसूचक {{math|''ω'' &sdot; 2 + 7}} से भी कम होता हैं:


:<math>V = \{0,2,4,\ldots;\omega,\omega + 2,\omega + 4,\ldots;\omega\cdot 2,\omega\cdot 2 + 2, \omega\cdot 2 + 4, \omega\cdot 2 + 6\}.</math>
:<math>V = \{0,2,4,\ldots;\omega,\omega + 2,\omega + 4,\ldots;\omega\cdot 2,\omega\cdot 2 + 2, \omega\cdot 2 + 4, \omega\cdot 2 + 6\}.</math>
इसका ऑर्डर प्रकार है:
इसका क्रम प्रारूप है:


:<math>\operatorname{ord}(V) = \omega\cdot 2 + 4 = \{0, 1, 2, \ldots; \omega, \omega+1, \omega+2, \ldots; \omega\cdot 2, \omega\cdot 2 + 1, \omega\cdot 2 + 2, \omega\cdot 2 + 3\},</math>
:<math>\operatorname{ord}(V) = \omega\cdot 2 + 4 = \{0, 1, 2, \ldots; \omega, \omega+1, \omega+2, \ldots; \omega\cdot 2, \omega\cdot 2 + 1, \omega\cdot 2 + 2, \omega\cdot 2 + 3\},</math>
क्योंकि गिनती की 2 अलग-अलग सूचियाँ हैं और अंत में क्रम से 4 हैं।
क्योंकि गणना की 2 अलग-अलग सूचियाँ हैं और अंत में क्रम से 4 हैं।


==परिमेय संख्या==
==परिमेय संख्या==

Revision as of 13:58, 6 July 2023

गणित में, विशेषकर समुच्चय सिद्धांत में, दो क्रमित समुच्चय X और Y को समान क्रमित प्रारूप कहा जाता है, यदि वे क्रम समरूप हैं, अर्थात, यदि कोई आक्षेप उपस्थित है (प्रत्येक अवयव दूसरे सम्मुचय में यथार्थतः एक के साथ जुड़ता है) ऐसे कि दोनों f और इसका व्युत्क्रम तथा एकदिस्ट (अवयवों के क्रम को संरक्षित करना) होता हैं। विशेष स्थिति में जब X पूरी तरह से व्यवस्थित है, की एकदिस्टता f इसके व्युत्क्रम की एकदिस्टता का तात्पर्य है।

उदाहरण के लिए, पूर्णांक के समुच्चय (गणित) और सम (गणित) पूर्णांकों के समुच्चय का क्रम प्रकार समान होता है, क्योंकि माप आक्षेप है जो क्रम को सुरक्षित रखता है। लेकिन पूर्णांकों के समुच्चय और परिमेय संख्याओं के समुच्चय (मानक क्रम के साथ) में समान क्रम प्रकार नहीं होता है, क्योंकि यद्यपि ही समुच्चय समान आकार के होते हैं (वे दोनों गणनीय समुच्चय हैं), उनके बीच कोई क्रम-परिरक्षी मानचित्रण विशेषण नहीं है। इन दो क्रमित प्रारूपों में हम दो : धनात्मक पूर्णांकों में समुच्चय (जिसमें सबसे कम अवयव होता है), और ऋणात्मक पूर्णांकों का समुच्चय (जिसमें सबसे बड़ा अवयव होता है) और जोड़ सकते हैं। विवृत अंतराल (0, 1) परिमेय का क्रम परिमेय के समरूपी है (चूँकि, उदाहरण के लिए, पूर्व से उत्तरार्द्ध तक दृढ़ता से बढ़ती द्विभाजन है); अर्ध-विवृत अंतराल [0,1) और (0,1] और विवृत अंतराल [0,1] में निहित परिमेय, तीन अतिरिक्त क्रमित प्रारूप के उदाहरण हैं।

चूँकि क्रम-समतुल्यता समतुल्य संबंध है, यह सभी क्रमबद्ध सम्मुचयो के वर्ग (सेट सिद्धांत) को समतुल्य वर्गों में विभाजित करता है।

सुव्यवस्थित क्रम प्रारूप

अलग-अलग क्रम प्रारूपों (ऊपर से नीचे) के साथ प्राकृतिक संख्याओं के समुच्चय पर तीन सुव्यवस्थित क्रम: , , और

परिभाषा के अनुसार प्रत्येक सुव्यवस्थित समुच्चय ठीक क्रमसूचक संख्या (गणित) के बराबर होता है। क्रमसूचक संख्याओं को उनकी कक्षाओं का विहित रूप माना जाता है, और इसलिए सुव्यवस्थित समुच्चय के क्रम प्रारूप को साधारणतया संबंधित क्रमसूचक के साथ पहचाना जाता है। उदाहरण के लिए, प्राकृत संख्याओं के समुच्चय का क्रम प्रकार ω हैं।

सुव्यवस्थित समुच्चय का क्रम प्रारूप V को कभी-कभी ord(V)[1] के रूप में व्यक्त किया जाता हैं।

उदाहरण के लिए, समुच्चय पर विचार करें V सम क्रमसूचक ω ⋅ 2 + 7 से भी कम होता हैं:

इसका क्रम प्रारूप है:

क्योंकि गणना की 2 अलग-अलग सूचियाँ हैं और अंत में क्रम से 4 हैं।

परिमेय संख्या

किसी भी गणनीय पूर्णतः क्रमबद्ध सेट को क्रम-संरक्षण तरीके से परिमेय संख्याओं में इंजेक्टिव रूप से मैप किया जा सकता है। किसी भी घने क्रम को गिनने योग्य पूरी तरह से आदेशित सेट जिसमें कोई उच्चतम और कोई निम्नतम तत्व नहीं है, उसे क्रम-संरक्षण तरीके से तर्कसंगत संख्याओं पर विशेष रूप से मैप किया जा सकता है।

संकेतन

पूर्णांक संख्या और परिमेय संख्या का क्रम प्रकार आमतौर पर दर्शाया जाता है और , क्रमशः. यदि एक सेट ऑर्डर प्रकार है , के द्वैत (आदेश सिद्धांत) का क्रम प्रकार (उलटा क्रम) दर्शाया गया है .

यह भी देखें

  • सुव्यवस्थित

बाहरी संबंध

  • Weisstein, Eric W. "Order Type". MathWorld.


संदर्भ

  1. "Ordinal Numbers and Their Arithmetic". Archived from the original on 2009-10-27. Retrieved 2007-06-13.