एकसमान मानदंड: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Function in mathematical analysis}} | {{Short description|Function in mathematical analysis}} | ||
[[Image:Vector norm sup.svg|frame|right|वर्ग की परिधि बिंदुओं का समूह है {{math|ℝ{{sup|2}}}} जहां सुपर मानदंड एक निश्चित सकारात्मक स्थिरांक के बराबर होता है। उदाहरण के लिए, अंक {{math|(2, 0)}}, {{math|(2, 1)}}, और {{math|(2, 2)}} एक वर्ग की परिधि के साथ स्थित हैं और उन सदिशों के समूह से संबंधित हैं जिनका सुपर मान 2 है।]][[गणितीय विश्लेषण]] में, | [[Image:Vector norm sup.svg|frame|right|वर्ग की परिधि बिंदुओं का समूह है {{math|ℝ{{sup|2}}}} जहां सुपर मानदंड एक निश्चित सकारात्मक स्थिरांक के बराबर होता है। उदाहरण के लिए, अंक {{math|(2, 0)}}, {{math|(2, 1)}}, और {{math|(2, 2)}} एक वर्ग की परिधि के साथ स्थित हैं और उन सदिशों के समूह से संबंधित हैं जिनका सुपर मान 2 है।]][[गणितीय विश्लेषण]] में, एकसमान मानदंड (या {{visible anchor|सुपर मानदंड}}) एक समुच्चय {{tmath|S}} पर परिभाषित [[वास्तविक संख्या]] या [[जटिल संख्या]] बंधे हुए फलन {{tmath|f}} को गैर-ऋणात्मक संख्या निर्दिष्ट करता है। | ||
:<math>\|f\|_\infty = \|f\|_{\infty,S} = \sup\left\{\,|f(s)| : s \in S\,\right\} | :<math>\|f\|_\infty = \|f\|_{\infty,S} = \sup\left\{\,|f(s)| : s \in S\,\right\}</math> | ||
इस | इस मानदंड को सर्वोच्च मानदंड, चेबीशेव मानदंड, अनंत मानदंड या, जब [[सबसे निचला और उच्चतम|सर्वोच्च]] वास्तव में अधिकतम होता है, तो {{visible anchor|अधिकतम मानदंड}} भी कहा जाता है। "समान मानदंड" नाम इस तथ्य से लिया गया है कि कार्यों का एक क्रम {{tmath|\left\{f_n\right\} }} में समान मानदंड से प्राप्त मीट्रिक के अनुसार {{tmath|f}} में परिवर्तित हो जाता है केवल यदि {{tmath|f_n}} समान रूप से {{tmath|f}} के [[एकसमान अभिसरण]] में परिवर्तित हो जाता है।<ref>{{cite book|last=Rudin|first=Walter|title=गणितीय विश्लेषण के सिद्धांत|url=https://archive.org/details/principlesofmath00rudi|url-access=registration|year=1964|publisher=McGraw-Hill|location=New York|isbn=0-07-054235-X|pages=[https://archive.org/details/principlesofmath00rudi/page/151 151]}}</ref> | ||
अगर {{tmath|f}} एक बंद और बंधे हुए अंतराल पर एक [[सतत कार्य]] है, या अधिक | |||
विशेषकर, यदि {{tmath|x}} कुछ | अगर {{tmath|f}} एक बंद और बंधे हुए अंतराल पर एक [[सतत कार्य]] है, या अधिक सामान्यतः एक [[ सघन स्थान |सघन स्थान]] समुच्चय होता है, तो यह घिरा हुआ होता है और उपरोक्त परिभाषा में सर्वोच्च वीयरस्ट्रैस [[चरम मूल्य प्रमेय]] द्वारा प्राप्त किया जाता है, इसलिए हम सर्वोच्च को अधिकतम से प्रतिस्थापित कर सकते हैं। इस स्थिति में, मानदंड को {{visible anchor|अधिकतम मानदंड}} भी कहा जाता है, विशेषकर, यदि {{tmath|x}} कुछ ऐसा सदिश होता है <math>x = \left(x_1, x_2, \ldots, x_n\right) </math> [[परिमित सेट|परिमित समुच्चय]] आयामी समन्वय स्थान में, यह रूप लेता है: | ||
:<math>\|x\|_\infty := \max \left(\left|x_1\right| , \ldots , \left|x_n\right|\right).</math> | :<math>\|x\|_\infty := \max \left(\left|x_1\right| , \ldots , \left|x_n\right|\right).</math> | ||
== मीट्रिक और टोपोलॉजी == | == मीट्रिक और टोपोलॉजी == | ||
इस मानदंड द्वारा उत्पन्न मीट्रिक को | इस मानदंड द्वारा उत्पन्न मीट्रिक को [[पफनुटी चेबीशेव]] के नाम पर {{visible anchor|चेबीशेव मेट्रिक}} कहा जाता है, जो इसका व्यवस्थित अध्ययन करने वाले पहले व्यक्ति थे। | ||
यदि हम असीमित कार्यों की अनुमति देते हैं, तो यह सूत्र सख्त अर्थों में एक मानक या मीट्रिक उत्पन्न नहीं करता है, | यदि हम असीमित कार्यों की अनुमति देते हैं, तो यह सूत्र सख्त अर्थों में एक मानक या मीट्रिक उत्पन्न नहीं करता है, यघपि प्राप्त तथाकथित मीट्रिक सामान्यीकृत मीट्रिक अभी भी किसी को प्रश्न में फलन स्थान पर टोपोलॉजी को परिभाषित करने की अनुमति देता है। | ||
बाइनरी | बाइनरी फलन <math display=block>d(f, g) = \|f - g\|_\infty</math>फिर एक विशेष डोमेन पर सभी बंधे हुए फलनों (और, जाहिर है, इसके किसी भी सबसेट) के स्थान पर एक मीट्रिक है। एक क्रम <math>\left\{f_n : n = 1, 2, 3, \ldots\right\}</math> किसी फलन में एक समान अभिसरण <math>f</math> अगर और केवल अगर<math display="block">\lim_{n\rightarrow\infty} \left\|f_n - f\right\|_\infty = 0.\,</math>हम इस मीट्रिक टोपोलॉजी के संबंध में बंद सेट और सेट के क्लोजर को परिभाषित कर सकते हैं; एकसमान मानदंड में बंद सेट को कभी-कभी समान रूप से बंद और एक समान बंद होने वाला कहा जाता है। फ़ंक्शंस ए के एक सेट का एक समान समापन सभी फ़ंक्शंस का स्थान है जिसे समान रूप से परिवर्तित फ़ंक्शंस के अनुक्रम द्वारा अनुमानित किया जा सकता है <math>A.</math> उदाहरण के लिए, स्टोन-वीयरस्ट्रैस प्रमेय का एक पुनर्कथन यह है कि सभी निरंतर कार्यों का सेट <math>[a,b]</math> बहुपदों के समुच्चय का एकसमान समापन है <math>[a, b].</math> | ||
एक कॉम्पैक्ट स्पेस पर जटिल सतत | एक कॉम्पैक्ट स्पेस पर जटिल सतत फलन (टोपोलॉजी) फलन के लिए, यह इसे [[सी-स्टार बीजगणित]]|सी* बीजगणित में बदल देता है। | ||
== गुण == | == गुण == |
Revision as of 02:56, 7 July 2023
गणितीय विश्लेषण में, एकसमान मानदंड (या सुपर मानदंड) एक समुच्चय पर परिभाषित वास्तविक संख्या या जटिल संख्या बंधे हुए फलन को गैर-ऋणात्मक संख्या निर्दिष्ट करता है।
इस मानदंड को सर्वोच्च मानदंड, चेबीशेव मानदंड, अनंत मानदंड या, जब सर्वोच्च वास्तव में अधिकतम होता है, तो अधिकतम मानदंड भी कहा जाता है। "समान मानदंड" नाम इस तथ्य से लिया गया है कि कार्यों का एक क्रम में समान मानदंड से प्राप्त मीट्रिक के अनुसार में परिवर्तित हो जाता है केवल यदि समान रूप से के एकसमान अभिसरण में परिवर्तित हो जाता है।[1]
अगर एक बंद और बंधे हुए अंतराल पर एक सतत कार्य है, या अधिक सामान्यतः एक सघन स्थान समुच्चय होता है, तो यह घिरा हुआ होता है और उपरोक्त परिभाषा में सर्वोच्च वीयरस्ट्रैस चरम मूल्य प्रमेय द्वारा प्राप्त किया जाता है, इसलिए हम सर्वोच्च को अधिकतम से प्रतिस्थापित कर सकते हैं। इस स्थिति में, मानदंड को अधिकतम मानदंड भी कहा जाता है, विशेषकर, यदि कुछ ऐसा सदिश होता है परिमित समुच्चय आयामी समन्वय स्थान में, यह रूप लेता है:
मीट्रिक और टोपोलॉजी
इस मानदंड द्वारा उत्पन्न मीट्रिक को पफनुटी चेबीशेव के नाम पर चेबीशेव मेट्रिक कहा जाता है, जो इसका व्यवस्थित अध्ययन करने वाले पहले व्यक्ति थे।
यदि हम असीमित कार्यों की अनुमति देते हैं, तो यह सूत्र सख्त अर्थों में एक मानक या मीट्रिक उत्पन्न नहीं करता है, यघपि प्राप्त तथाकथित मीट्रिक सामान्यीकृत मीट्रिक अभी भी किसी को प्रश्न में फलन स्थान पर टोपोलॉजी को परिभाषित करने की अनुमति देता है।
बाइनरी फलन
गुण
सदिशों का समुच्चय जिसका अनंत मान एक दिया गया स्थिरांक है, किनारे की लंबाई के साथ एक अतिविम की सतह बनाता है सबस्क्रिप्ट का कारणक्या वह जब भी है सतत है
यह भी देखें
संदर्भ
- ↑ Rudin, Walter (1964). गणितीय विश्लेषण के सिद्धांत. New York: McGraw-Hill. pp. 151. ISBN 0-07-054235-X.