उत्पाद क्रम: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 35: | Line 35: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 30/06/2023]] | [[Category:Created On 30/06/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 16:53, 7 July 2023
गणित में, आंशिक क्रम और दिया गया है जो एक समुच्चय और पर, क्रमशः, उत्पाद क्रम[1][2][3][4](निर्देशांकवार क्रम [5][3][6] या घटक अनुसार क्रम[2][7] भी कहा जाता है) और कार्टेशियन उत्पाद पर आंशिक क्रम में होता है। में दो जोड़े और दिए गए है जो प्रकाशित करते है की अगर और होता है तो होता है।
पर एक और संभावित क्रम शब्दकोषीय क्रम होता है, जो पूर्ण क्रम होता है। यघपि दो पूर्ण क्रम का उत्पाद क्रम सामान्य रूप से पूर्ण नहीं होता है; उदाहरण के लिए, जोड़े और क्रम देने के उत्पाद क्रम में स्वयं के साथ अतुलनीय होते हैं। दो पूर्ण क्रमों का शब्दकोषीय संयोजन उनके उत्पाद क्रम का एक रैखिक विस्तार होता है, और इस प्रकार उत्पाद क्रम शब्दकोषीय क्रम का एक उपसंबंध होता है।[3]
उत्पाद क्रम वाला कार्टेशियन उत्पाद मोनोटोन फलन के साथ आंशिक रूप से क्रम किए गए समुच्चय की श्रेणी में श्रेणीबद्ध उत्पाद होते है।[7]
उत्पाद क्रम अनैतिक (संभवतः अनंत) कार्टेशियन उत्पादों के लिए सामान्यीकृत होता है। कल्पना करे एक समुच्चय है जो प्रत्येक के लिए एक पूर्व-आदेशित समुच्चय होता है। फिर उत्पाद पूर्वक्रम पर को और को में किसी के लिए प्रकाशित करके परिभाषित किया जाता है जो इस प्रकार है
- होता है अगर और केवल अगर प्रत्येक के लिए होता है।
- यदि प्रत्येक एक आंशिक क्रम में होता है तो उत्पाद का पूर्व क्रम भी आंशिक क्रम होता है।
इसके अतिरिक्त, एक समुच्चय दिया गया कार्टेशियन उत्पाद पर उत्पाद क्रम के के उपसमूहों के समावेशन क्रम से पहचाना जा सकता है। [4]
यह धारणा पूर्व-क्रम पर भी समान रूप से प्रयुक्त होती है। उत्पाद क्रम कई समृद्ध श्रेणियों में श्रेणीबद्ध उत्पाद भी होते है, जिसमें जालक (नेट) और बूलियन बीजगणित सम्मलित होती हैं।[7]
संदर्भ
- ↑ Neggers, J.; Kim, Hee Sik (1998), "4.2 Product Order and Lexicographic Order", Basic Posets, World Scientific, pp. 64–78, ISBN 9789810235895
- ↑ 2.0 2.1 Sudhir R. Ghorpade; Balmohan V. Limaye (2010). मल्टीवेरिएबल कैलकुलस और विश्लेषण में एक पाठ्यक्रम. Springer. p. 5. ISBN 978-1-4419-1621-1.
- ↑ 3.0 3.1 3.2 Egbert Harzheim (2006). ऑर्डर किए गए सेट. Springer. pp. 86–88. ISBN 978-0-387-24222-4.
- ↑ 4.0 4.1 Victor W. Marek (2009). संतुष्टि के गणित का परिचय. CRC Press. p. 17. ISBN 978-1-4398-0174-1.
- ↑ Davey & Priestley, Introduction to Lattices and Order (Second Edition), 2002, p. 18
- ↑ Alexander Shen; Nikolai Konstantinovich Vereshchagin (2002). मूल समुच्चय सिद्धांत. American Mathematical Soc. p. 43. ISBN 978-0-8218-2731-4.
- ↑ 7.0 7.1 7.2 Paul Taylor (1999). गणित की व्यावहारिक नींव. Cambridge University Press. pp. 144–145 and 216. ISBN 978-0-521-63107-5.
यह भी देखें
- प्रत्यक्ष उत्पाद#द्विआधारी संबंधों का प्रत्यक्ष उत्पाद
- आंशिक रूप से क्रम किया गया समुच्चय#उदाहरण
- स्टार उत्पाद, आंशिक क्रम के संयोजन का एक अलग तरीका
- पूर्ण क्रम#पूरी तरह से क्रम किए गए समुच्चय के कार्टेशियन उत्पाद पर क्रम
- आंशिक आदेशों का सामान्य योग
- Ordered vector space – Vector space with a partial order
श्रेणी:आदेश सिद्धांत