आंतरिक समुच्चय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[गणितीय तर्क]] में, विशेष रूप से [[मॉडल सिद्धांत]] और गैरमानक विश्लेषण में, '''आंतरिक समुच्चय''' एक ऐसा समुच्चय होता है जो मॉडल का सदस्य होता है।
[[गणितीय तर्क]] में, विशेष रूप से [[मॉडल सिद्धांत]] और गैर-मानक विश्लेषण में, '''आंतरिक समुच्चय''' एक ऐसा समुच्चय होता है जो मॉडल का सदस्य होता है।


आंतरिक समुच्चय की अवधारणा [[स्थानांतरण सिद्धांत]] तैयार करने में उपकरण है, जो [[वास्तविक संख्या]] '''R''' के गुणों और '''*R''' द्वारा दर्शाए गए बड़े क्षेत्र (गणित) के गुणों के बीच तार्किक संबंध से संबंधित है जिसे [[अतियथार्थवादी संख्या|अति वास्तविक संख्या]] कहा जाता है। इस प्रकार से क्षेत्र '''*R''' में, विशेष रूप से, अत्यंत सूक्ष्म छोटी संख्याएं सम्मिलित हैं, जो उनके उपयोग के लिए जटिल गणितीय औचित्य प्रदान करती हैं। साधारणतया कहें तो, विचार यह है कि वास्तविक विश्लेषण को गणितीय तर्क की उपयुक्त भाषा में पूर्ण रूप से व्यक्त किया जाए, और फिर बताया जाए कि यह भाषा '''*R''' पर भी समान रूप से लागू होती है। यह संभव हो जाता है क्योंकि [[सेट-सैद्धांतिक|समुच्चय-सैद्धांतिक]] स्तर पर, ऐसी भाषा में प्रस्तावों को सभी समुच्चयों के अतिरिक्त मात्र आंतरिक समुच्चयों पर पूर्ण रूप से लागू करने के लिए व्याख्या की जाती है (ध्यान दें कि भाषा शब्द का उपयोग उपरोक्त में शिथिल अर्थ में किया गया है)।
आंतरिक समुच्चय की अवधारणा [[स्थानांतरण सिद्धांत]] तैयार करने में उपकरण है, जो [[वास्तविक संख्या]] '''R''' के गुणों और '''*R''' द्वारा दर्शाए गए बड़े क्षेत्र (गणित) के गुणों के बीच तार्किक संबंध से संबंधित है जिसे [[अतियथार्थवादी संख्या|अति वास्तविक संख्या]] कहा जाता है। इस प्रकार से क्षेत्र '''*R''' में, विशेष रूप से, अत्यंत सूक्ष्म छोटी संख्याएं सम्मिलित हैं, जो उनके उपयोग के लिए जटिल गणितीय तर्कसंगति प्रदान करती हैं। साधारणतया कहें तो, विचार यह है कि वास्तविक विश्लेषण को गणितीय तर्क की उपयुक्त भाषा में पूर्ण रूप से व्यक्त किया जाए, और फिर बताया जाए कि यह भाषा '''*R''' पर भी समान रूप से लागू होती है। यह संभव हो जाता है क्योंकि [[सेट-सैद्धांतिक|समुच्चय-सैद्धांतिक]] स्तर पर, ऐसी भाषा में प्रस्तावों को सभी समुच्चयों के अतिरिक्त मात्र आंतरिक समुच्चयों पर पूर्ण रूप से लागू करने के लिए व्याख्या की जाती है (ध्यान दें कि भाषा शब्द का उपयोग उपरोक्त में शिथिल भाव में किया गया है)।


इस प्रकार से [[एडवर्ड नेल्सन]] का [[आंतरिक सेट सिद्धांत|आंतरिक समुच्चय सिद्धांत]] गैर-मानक विश्लेषण के लिए स्वयंसिद्ध दृष्टिकोण है (रचनात्मक गैर-मानक विश्लेषण पर पामग्रेन भी देखें)। गैरमानक विश्लेषण के पारंपरिक अनंत स्पष्टीकरण भी आंतरिक समुच्चय की अवधारणा का पूर्ण रूप से उपयोग करते हैं।
इस प्रकार से [[एडवर्ड नेल्सन]] का [[आंतरिक सेट सिद्धांत|आंतरिक समुच्चय सिद्धांत]] गैर-मानक विश्लेषण के लिए स्वयंसिद्ध दृष्टिकोण है (रचनात्मक गैर-मानक विश्लेषण पर पामग्रेन भी देखें)। गैर-मानक विश्लेषण के पारंपरिक अनंत स्पष्टीकरण भी आंतरिक समुच्चय की अवधारणा का पूर्ण रूप से उपयोग करते हैं।


==[[अल्ट्रापावर|अति घात]] निर्माण में आंतरिक समुच्चय==
==[[अल्ट्रापावर|अति घात]] रचना में आंतरिक समुच्चय==
इस प्रकार से वास्तविक संख्याओं के अनुक्रमों <math>\langle u_n\rangle</math> के समतुल्य वर्गों के रूप में अति वास्तविक संख्याओं के अति घात निर्माण के सापेक्ष, '''*'R'''' का एक आंतरिक उपसमुच्चय '''[A<sub>n</sub>]''' वास्तविक समुच्चय <math>\langle A_n \rangle</math> के अनुक्रम द्वारा पूर्ण रूप से परिभाषित किया गया है, जहां अति घात '''<math>[u_n]</math>''' कहा जाता है कि यह समुच्चय '''<math>[A_n]\subseteq \; ^*\!{\mathbb R}</math>''' से संबंधित है यदि और मात्र यदि सूचकांकों का समुच्चय n जैसे कि <math>u_n \in A_n</math>, '''*R''' के निर्माण में प्रयुक्त [[ अल्ट्राफ़िल्टर |अतिसूक्ष्मनिस्यंदक]] का सदस्य है।
इस प्रकार से वास्तविक संख्याओं के अनुक्रमों <math>\langle u_n\rangle</math> के समतुल्य वर्गों के रूप में अति वास्तविक संख्याओं के अति घात रचना के सापेक्ष, '''*'R'''' का एक आंतरिक उपसमुच्चय '''[A<sub>n</sub>]''' वास्तविक समुच्चय <math>\langle A_n \rangle</math> के अनुक्रम द्वारा पूर्ण रूप से परिभाषित किया गया है, जहां अति घात को '''<math>[u_n]</math>''' कहा जाता है कि यह समुच्चय '''<math>[A_n]\subseteq \; ^*\!{\mathbb R}</math>''' से संबंधित है यदि और मात्र यदि सूचकांकों का समुच्चय n जैसे कि <math>u_n \in A_n</math>, '''*R''' की रचना में प्रयुक्त [[ अल्ट्राफ़िल्टर |अतिसूक्ष्मनिस्यंदक]] का सदस्य है।


अधिक सामान्यतः, आंतरिक इकाई वास्तविक इकाई के प्राकृतिक विस्तार का सदस्य है। अतः इस प्रकार, '''*R''' का प्रत्येक अवयव आंतरिक है; '''*R''' का उपसमुच्चय आंतरिक है यदि और मात्र यदि '''R''' की घात समुच्चय <math>\mathcal{P}(\mathbb{R})</math> के प्राकृतिक विस्तार <math>{ } ^* \mathcal{P}(\mathbb{R})</math> का सदस्य है; आदि।
अधिक सामान्यतः, आंतरिक इकाई वास्तविक इकाई के प्राकृतिक विस्तार का सदस्य है। अतः इस प्रकार, '''*R''' का प्रत्येक अवयव आंतरिक है; '''*R''' का उपसमुच्चय आंतरिक है यदि और मात्र यदि '''R''' की घात समुच्चय <math>\mathcal{P}(\mathbb{R})</math> के प्राकृतिक विस्तार <math>{ } ^* \mathcal{P}(\mathbb{R})</math> के सदस्य है; आदि।


==वास्तविकता के आंतरिक उपसमुच्चय==
==वास्तविकता के आंतरिक उपसमुच्चय==
इस प्रकार से '''*R''' का प्रत्येक आंतरिक उपसमुच्चय जो (की अन्तःस्थापन प्रति) '''R''' का उपसमुच्चय है, आवश्यक रूप से ''परिमित'' है (प्रमेय 3.9.1 गोल्डब्लैट, 1998 देखें)। अतः दूसरे शब्दों में, अति वास्तविक के प्रत्येक आंतरिक अनंत उपसमुच्चय में आवश्यक रूप से गैरमानक अवयव होते हैं।
इस प्रकार से '''*R''' का प्रत्येक आंतरिक उपसमुच्चय जो (की अन्तःस्थापन प्रति) '''R''' का उपसमुच्चय है, आवश्यक रूप से ''परिमित'' है (प्रमेय 3.9.1 गोल्डब्लैट, 1998 देखें)। अतः दूसरे शब्दों में, अति वास्तविक के प्रत्येक आंतरिक अनंत उपसमुच्चय में आवश्यक रूप से गैर-मानक अवयव होते हैं।


==यह भी देखें==
==यह भी देखें==

Revision as of 14:30, 6 July 2023

गणितीय तर्क में, विशेष रूप से मॉडल सिद्धांत और गैर-मानक विश्लेषण में, आंतरिक समुच्चय एक ऐसा समुच्चय होता है जो मॉडल का सदस्य होता है।

आंतरिक समुच्चय की अवधारणा स्थानांतरण सिद्धांत तैयार करने में उपकरण है, जो वास्तविक संख्या R के गुणों और *R द्वारा दर्शाए गए बड़े क्षेत्र (गणित) के गुणों के बीच तार्किक संबंध से संबंधित है जिसे अति वास्तविक संख्या कहा जाता है। इस प्रकार से क्षेत्र *R में, विशेष रूप से, अत्यंत सूक्ष्म छोटी संख्याएं सम्मिलित हैं, जो उनके उपयोग के लिए जटिल गणितीय तर्कसंगति प्रदान करती हैं। साधारणतया कहें तो, विचार यह है कि वास्तविक विश्लेषण को गणितीय तर्क की उपयुक्त भाषा में पूर्ण रूप से व्यक्त किया जाए, और फिर बताया जाए कि यह भाषा *R पर भी समान रूप से लागू होती है। यह संभव हो जाता है क्योंकि समुच्चय-सैद्धांतिक स्तर पर, ऐसी भाषा में प्रस्तावों को सभी समुच्चयों के अतिरिक्त मात्र आंतरिक समुच्चयों पर पूर्ण रूप से लागू करने के लिए व्याख्या की जाती है (ध्यान दें कि भाषा शब्द का उपयोग उपरोक्त में शिथिल भाव में किया गया है)।

इस प्रकार से एडवर्ड नेल्सन का आंतरिक समुच्चय सिद्धांत गैर-मानक विश्लेषण के लिए स्वयंसिद्ध दृष्टिकोण है (रचनात्मक गैर-मानक विश्लेषण पर पामग्रेन भी देखें)। गैर-मानक विश्लेषण के पारंपरिक अनंत स्पष्टीकरण भी आंतरिक समुच्चय की अवधारणा का पूर्ण रूप से उपयोग करते हैं।

अति घात रचना में आंतरिक समुच्चय

इस प्रकार से वास्तविक संख्याओं के अनुक्रमों के समतुल्य वर्गों के रूप में अति वास्तविक संख्याओं के अति घात रचना के सापेक्ष, *'R' का एक आंतरिक उपसमुच्चय [An] वास्तविक समुच्चय के अनुक्रम द्वारा पूर्ण रूप से परिभाषित किया गया है, जहां अति घात को कहा जाता है कि यह समुच्चय से संबंधित है यदि और मात्र यदि सूचकांकों का समुच्चय n जैसे कि , *R की रचना में प्रयुक्त अतिसूक्ष्मनिस्यंदक का सदस्य है।

अधिक सामान्यतः, आंतरिक इकाई वास्तविक इकाई के प्राकृतिक विस्तार का सदस्य है। अतः इस प्रकार, *R का प्रत्येक अवयव आंतरिक है; *R का उपसमुच्चय आंतरिक है यदि और मात्र यदि R की घात समुच्चय के प्राकृतिक विस्तार के सदस्य है; आदि।

वास्तविकता के आंतरिक उपसमुच्चय

इस प्रकार से *R का प्रत्येक आंतरिक उपसमुच्चय जो (की अन्तःस्थापन प्रति) R का उपसमुच्चय है, आवश्यक रूप से परिमित है (प्रमेय 3.9.1 गोल्डब्लैट, 1998 देखें)। अतः दूसरे शब्दों में, अति वास्तविक के प्रत्येक आंतरिक अनंत उपसमुच्चय में आवश्यक रूप से गैर-मानक अवयव होते हैं।

यह भी देखें

संदर्भ

  • Goldblatt, Robert. Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate Texts in Mathematics, 188. Springer-Verlag, New York, 1998.
  • Abraham Robinson (1996), Non-standard analysis, Princeton landmarks in mathematics and physics, Princeton University Press, ISBN 978-0-691-04490-3