आर्यभट: Difference between revisions

From Vigyanwiki
m (22 revisions imported from alpha:आर्यभट्ट)
No edit summary
Line 10: Line 10:
}}
}}


आर्यभट (476-550 सीई)<ref>[[:en:Aryabhata|"Aryabhata"]]</ref> भारतीय गणित और भारतीय खगोल विज्ञान के शास्त्रीय युग के एक भारतीय गणितज्ञ और खगोलशास्त्री थे।
आर्यभट (476-550 सीई)<ref>"आर्यभट्ट"([[:en:Aryabhata|"Āryabhaṭa")]]</ref> का जन्म पाटलिपुत्र (पटना) में हुआ था। वह भारतीय गणित और भारतीय खगोल विज्ञान के शास्त्रीय युग के एक भारतीय गणितज्ञ और खगोलशास्त्री थे।


वह गुप्त युग <ref>[https://www.studentsofhistory.com/the-gupta-empire "Achievements of the Gupta Empire"]</ref>में फले -फूले  और आर्यभटीय<ref>"आर्यभटीय </ref> (जिसमें उल्लेख है कि 3600 कलियुग, 499 ईस्वी में, वह 23 वर्ष के थे ) और आर्य-सिद्धांत<ref>[https://www.newworldencyclopedia.org/entry/Aryabhata "Aryabhata"]</ref> जैसे कार्यों का निर्माण किया।
वह गुप्त युग <ref>"गुप्त साम्राज्य की उपलब्धियां"([https://www.studentsofhistory.com/the-gupta-empire "Achievements of the Gupta Empire"])</ref>में फले -फूले  और [[आर्यभटीय]](जिसमें उल्लेख है कि 3600 कलियुग, 499 ईस्वी में, वह 23 वर्ष के थे ) और आर्य-सिद्धांत<ref>"आर्यभट्ट"([https://www.newworldencyclopedia.org/entry/Aryabhata "Āryabhaṭa"])</ref> जैसे कार्यों का निर्माण किया।


उनका शुद्ध गणित वर्ग और घनमूलों का निर्धारण, उनके गुणों और क्षेत्रमिति के साथ ज्यामितीय आंकड़े, सूक्ति की छाया पर अंकगणितीय प्रगति की समस्याएं, द्विघात समीकरण, रैखिक और अनिश्चित समीकरण जैसे विषयों पर चर्चा करता है। आर्यभट्ट ने pi (π) 3.1416 का मान दशमलव के चौथे अंक तक परिकलित किया। विद्वान उन्हें भारतीय खगोल विज्ञान और गणित के स्तंभों में से एक मानते हैं।<ref>''A Primer to Bhāratīya Gaṇitam , Bhāratīya-Gaṇita-Praveśa- Part-1''. Samskrit Promotion Foundation. 2021. [[ISBN (identifier)|ISBN]] [[Special:BookSources/978-81-951757-2-7|<bdi>978-81-951757-2-7</bdi>]].</ref>
आर्यभटीय,  गणित और खगोल विज्ञान दोनों से संबंधित है। इसमें 121 श्लोक हैं और विषय वस्तु को 4 अध्यायों में विभाजित किया गया है, जिन्हें पाद (खंड) कहा जाता है।
 
पाद -1 (गीतिका-पाद): 13 श्लोकों से मिलकर बुनियादी परिभाषाएँ और महत्वपूर्ण खगोलीय मापदंडों और तालिकाएँ निर्धारित होती हैं। यह परिभाषा देता है की
 
- [[कल्प]], मनु और युग जो समय की बड़ी इकाइयाँ हैं
 
- चिन्ह, घात (डिग्री) और मिनट जो वृत्ताकार इकाइयाँ हैं
 
- रैखिक इकाइयाँ योजना, हस्त, अंगुला
 
पाद - 2 (गणित-पाद): 33 श्लोकों में गणित के बारे में बात की गई है।  आवृत(कवर) किए गए विषय ज्यामितीय आंकड़े, उनके गुण और क्षेत्रमिति हैं; सूक्ति की छाया पर समस्याएं ; सरल,  समकालिक, द्विघात और रैखिक अनिश्चित समीकरण। वर्गमूल और घनमूल निकालने की विधियाँ।
 
पाद - 3 (कालक्रिया-पाद): समय की विभिन्न इकाइयों और सूर्य, चंद्रमा और ग्रहों की वास्तविक स्थिति के निर्धारण से संबंधित 25 श्लोकों से मिलकर बनता है। सूर्य, चंद्रमा और ग्रहों के वास्तविक देशांतर की गणना करने के तरीके।
 
पाद - 4 (गोला-पाद): आकाशीय क्षेत्र पर सूर्य, चंद्रमा और ग्रहों की गति से संबंधित 50 श्लोकों से मिलकर बनता है। ग्रहणों की गणना और चित्रमय प्रतिनिधित्व और ग्रहों की दृश्यता।
 
आर्यभटीय को सामान्यतः दो रचनाओं का एक संग्रह माना जाता है:<ref>"शुक्ला, कृपा शंकर (1976)। आर्यभट के आर्यभटीय। नई दिल्ली: भारतीय राष्ट्रीय विज्ञान अकादमी।"(Shukla, Kripa Shankar (1976). Āryabhaṭīya of Āryabhaṭa. New Delhi: The Indian National Science Academy.)</ref> 1. दशगीतिका-सूत्र: पाद -1 से मिलकर बनता है, जो [[गीतिका]] मीटर में 10 श्लोकों में खगोलीय मापदंडों को बताता है और 2. आर्यास्तशत : दूसरे, तीसरे और चौथे पादों से मिलकर बनता है जिसमें 108 श्लोक होते हैं, ([[आर्या]] मीटर)
 
यहाँ आर्यभटीय की उल्लेखनीय विशेषताएं हैं:
 
# आर्यभट द्वारा परिभाषित अंक, अंकन की वर्णानुक्रमिक प्रणाली [[संख्यान प्रणाली|कटपयादि]] प्रणाली से अलग है, लेकिन पद्य में संक्षेप में संख्या व्यक्त करने में अधिक प्रभावी है।
# व्यास अनुपात की परिधि = 3.1416 ।
# ज्या-अन्तर सारणी
# अनिश्चित समीकरणों का हल
# पृथ्वी के घूमने का सिद्धांत
# खगोलीय मापदंड
# समय और समय का विभाजन
# ग्रहों की गति का सिद्धांत
# ग्रहों के आकाशीय अक्षांश
# रेडियन माप का, मिनटों में उपयोग
 
[[भास्कर प्रथम]], प्रभाकर, सोमेश्वर, सूर्यदेव, परमेश्वर, नीलकंठ सोमयाजी, माधव ने आर्यभटीय पर  विवरण लिखा था।


== बाहरी संपर्क ==
== बाहरी संपर्क ==
Line 25: Line 56:


== संदर्भ ==
== संदर्भ ==
<references />
[[Category:Articles with hCards]]
[[Category:गणित]]
[[Category:भारतीय गणितज्ञ]]
[[Category:भारतीय गणितज्ञ]]
[[Category:गणित]]
<references />

Revision as of 13:26, 31 October 2022

आर्यभट्ट
2064 aryabhata-crp.jpg
जन्म476 सीई
कुसुमपुरा (पाटलिपुत्र)
मर गया550 सीई
पाटलिपुत्र
युगगुप्त युग
उल्लेखनीय कार्यआर्यभटीय, आर्य-सिद्धांत:

आर्यभट (476-550 सीई)[1] का जन्म पाटलिपुत्र (पटना) में हुआ था। वह भारतीय गणित और भारतीय खगोल विज्ञान के शास्त्रीय युग के एक भारतीय गणितज्ञ और खगोलशास्त्री थे।

वह गुप्त युग [2]में फले -फूले और आर्यभटीय(जिसमें उल्लेख है कि 3600 कलियुग, 499 ईस्वी में, वह 23 वर्ष के थे ) और आर्य-सिद्धांत[3] जैसे कार्यों का निर्माण किया।

आर्यभटीय, गणित और खगोल विज्ञान दोनों से संबंधित है। इसमें 121 श्लोक हैं और विषय वस्तु को 4 अध्यायों में विभाजित किया गया है, जिन्हें पाद (खंड) कहा जाता है।

पाद -1 (गीतिका-पाद): 13 श्लोकों से मिलकर बुनियादी परिभाषाएँ और महत्वपूर्ण खगोलीय मापदंडों और तालिकाएँ निर्धारित होती हैं। यह परिभाषा देता है की

- कल्प, मनु और युग जो समय की बड़ी इकाइयाँ हैं

- चिन्ह, घात (डिग्री) और मिनट जो वृत्ताकार इकाइयाँ हैं

- रैखिक इकाइयाँ योजना, हस्त, अंगुला

पाद - 2 (गणित-पाद): 33 श्लोकों में गणित के बारे में बात की गई है। आवृत(कवर) किए गए विषय ज्यामितीय आंकड़े, उनके गुण और क्षेत्रमिति हैं; सूक्ति की छाया पर समस्याएं ; सरल, समकालिक, द्विघात और रैखिक अनिश्चित समीकरण। वर्गमूल और घनमूल निकालने की विधियाँ।

पाद - 3 (कालक्रिया-पाद): समय की विभिन्न इकाइयों और सूर्य, चंद्रमा और ग्रहों की वास्तविक स्थिति के निर्धारण से संबंधित 25 श्लोकों से मिलकर बनता है। सूर्य, चंद्रमा और ग्रहों के वास्तविक देशांतर की गणना करने के तरीके।

पाद - 4 (गोला-पाद): आकाशीय क्षेत्र पर सूर्य, चंद्रमा और ग्रहों की गति से संबंधित 50 श्लोकों से मिलकर बनता है। ग्रहणों की गणना और चित्रमय प्रतिनिधित्व और ग्रहों की दृश्यता।

आर्यभटीय को सामान्यतः दो रचनाओं का एक संग्रह माना जाता है:[4] 1. दशगीतिका-सूत्र: पाद -1 से मिलकर बनता है, जो गीतिका मीटर में 10 श्लोकों में खगोलीय मापदंडों को बताता है और 2. आर्यास्तशत : दूसरे, तीसरे और चौथे पादों से मिलकर बनता है जिसमें 108 श्लोक होते हैं, (आर्या मीटर)।

यहाँ आर्यभटीय की उल्लेखनीय विशेषताएं हैं:

  1. आर्यभट द्वारा परिभाषित अंक, अंकन की वर्णानुक्रमिक प्रणाली कटपयादि प्रणाली से अलग है, लेकिन पद्य में संक्षेप में संख्या व्यक्त करने में अधिक प्रभावी है।
  2. व्यास अनुपात की परिधि = 3.1416 ।
  3. ज्या-अन्तर सारणी
  4. अनिश्चित समीकरणों का हल
  5. पृथ्वी के घूमने का सिद्धांत
  6. खगोलीय मापदंड
  7. समय और समय का विभाजन
  8. ग्रहों की गति का सिद्धांत
  9. ग्रहों के आकाशीय अक्षांश
  10. रेडियन माप का, मिनटों में उपयोग

भास्कर प्रथम, प्रभाकर, सोमेश्वर, सूर्यदेव, परमेश्वर, नीलकंठ सोमयाजी, माधव ने आर्यभटीय पर विवरण लिखा था।

बाहरी संपर्क

यह भी देखें

Aryabhata

संदर्भ

  1. "आर्यभट्ट"("Āryabhaṭa")
  2. "गुप्त साम्राज्य की उपलब्धियां"("Achievements of the Gupta Empire")
  3. "आर्यभट्ट"("Āryabhaṭa")
  4. "शुक्ला, कृपा शंकर (1976)। आर्यभट के आर्यभटीय। नई दिल्ली: भारतीय राष्ट्रीय विज्ञान अकादमी।"(Shukla, Kripa Shankar (1976). Āryabhaṭīya of Āryabhaṭa. New Delhi: The Indian National Science Academy.)