घात श्रेणी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{distinguish|आईबीएम थिंकपैड बिजली की श्रृंखला|शक्ति (टीवी श्रृंखला)|पॉवर्स (अमेरिकी टीवी श्रृंखला)|पॉवर्स (ब्रिटिश टीवी श्रृंखला)|शक्ति (टीवी श्रृंखला)}}
{{distinguish|आईबीएम थिंकपैड बिजली की श्रृंखला|घात (टीवी श्रृंखला)|पॉवर्स (अमेरिकी टीवी श्रृंखला)|पॉवर्स (ब्रिटिश टीवी श्रृंखला)|घात (टीवी श्रृंखला)}}
{{short description|Infinite sum of monomials}}
{{short description|Infinite sum of monomials}}


गणित में, घात श्रृंखला ( [[चर (गणित)]] में) रूप की अनंत श्रृंखला होती है
गणित में, घात श्रृंखला ([[चर (गणित)|चर]] में) रूप की अनंत श्रृंखला होती है:
<math display="block">\sum_{n=0}^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots</math>
<math display="block">\sum_{n=0}^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots</math>
जहाँ <sub>n</sub>nवें पद के गुणांक का प्रतिनिधित्व करता है और c स्थिरांक है। पावर श्रृंखला [[गणितीय विश्लेषण]] में उपयोगी होती है, जहां वे [[असीम रूप से भिन्न कार्य]]ों की [[टेलर श्रृंखला]] के रूप में उत्पन्न होती हैं। वास्तव में, बोरेल की लेम्मा | बोरेल की प्रमेय का तात्पर्य है कि प्रत्येक शक्ति श्रृंखला कुछ सुचारु कार्य की टेलर श्रृंखला है।
जहाँ ''a''<sub>n</sub>वें पद के गुणांक का प्रतिनिधित्व करता है और c स्थिरांक है। घात श्रृंखला [[गणितीय विश्लेषण]] में उपयोगी होती है, जहां वे [[असीम रूप से भिन्न कार्य|असीम रूप से भिन्न कार्यों]] की [[टेलर श्रृंखला]] के रूप में उत्पन्न होती हैं। वास्तव में, बोरेल की प्रमेय का तात्पर्य है कि प्रत्येक घात श्रृंखला कुछ सुचारु कार्य की टेलर श्रृंखला है।


कई स्थितियों में, c (श्रृंखला का केंद्र) शून्य के बराबर होता है, उदाहरण के लिए [[मैकलॉरिन श्रृंखला]] पर विचार करते समय। ऐसे मामलों में, शक्ति श्रृंखला सरल रूप लेती है
कई स्थितियों में, c (श्रृंखला का केंद्र) शून्य के समान होता है, उदाहरण के लिए [[मैकलॉरिन श्रृंखला]] पर विचार करते समय होता है। ऐसी स्थिति में, घात श्रृंखला सरल रूप लेती है:
<math display="block">\sum_{n=0}^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots.</math>
<math display="block">\sum_{n=0}^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots.</math>
गणितीय विश्लेषण में उनकी भूमिका से परे, पावर श्रृंखला [[साहचर्य]] में [[जनरेटिंग फ़ंक्शन]] ( प्रकार की औपचारिक पावर श्रृंखला) और इलेक्ट्रॉनिक इंजीनियरिंग ([[जेड को बदलने]] के नाम के तहत) के रूप में भी होती है। [[वास्तविक संख्या]]ओं के लिए परिचित [[दशमलव प्रतिनिधित्व]] को [[पूर्णांक]] गुणांक के साथ, लेकिन तर्क x के साथ शक्ति श्रृंखला के उदाहरण के रूप में भी देखा जा सकता है {{Fraction|1|10}}. [[संख्या सिद्धांत]] में, पी-एडिक संख्या|पी-एडिक संख्याओं की अवधारणा भी घात श्रृंखला से निकटता से संबंधित है।
गणितीय विश्लेषण में उनकी भूमिका से परे, घात श्रृंखला [[साहचर्य]] में [[जनरेटिंग फ़ंक्शन]] (एक प्रकार की औपचारिक घात श्रृंखला) और इलेक्ट्रॉनिक इंजीनियरिंग ([[जेड को बदलने|जेड-ट्रांसफॉर्म]] के नाम के अनुसार) के रूप में भी होती है। [[वास्तविक संख्या|वास्तविक संख्याओं]] के लिए परिचित [[दशमलव प्रतिनिधित्व|दशमलव संकेतन]] को [[पूर्णांक]] गुणांक के साथ घात श्रृंखला के उदाहरण के रूप में भी देखा जा सकता है, किन्तु तर्क x के साथ {{Fraction|1|10}} पर निश्चित किया गया है। [[संख्या सिद्धांत]] में, पी-एडिक संख्या|पी-एडिक संख्याओं की अवधारणा भी घात श्रृंखला से निकटता से संबंधित है।


==उदाहरण==
==उदाहरण==


===बहुपद===
===बहुपद===
[[Image:Exp series.gif|right|thumb|घातीय फ़ंक्शन (नीले रंग में), और इसकी मैकलॉरिन श्रृंखला (लाल रंग में) के पहले n + 1 शब्दों के योग से इसका सुधार सन्निकटन। तो<br> n=0 देता है <math>f(x) = 1</math>,<br> n=1 <math>f(x) = 1 + x</math>,<br> n=2 <math>f(x)= 1 + x + x^2/2</math>, <br> n=3 <math>f(x)= 1 + x + x^2/2 + x^3/6</math>वगैरह-वगैरह.]]किसी भी [[बहुपद]] को किसी भी केंद्र c के चारों ओर घात श्रृंखला के रूप में आसानी से व्यक्त किया जा सकता है, हालाँकि सीमित रूप से कई गुणांकों को छोड़कर सभी शून्य होंगे क्योंकि परिभाषा के अनुसार घात श्रृंखला में अनंत रूप से कई पद होते हैं। उदाहरण के लिए, बहुपद <math display="inline">f(x) = x^2 + 2x + 3</math> केंद्र के चारों ओर शक्ति श्रृंखला के रूप में लिखा जा सकता है <math display="inline">c = 0</math> जैसा
[[Image:Exp series.gif|right|thumb|घातीय फ़ंक्शन (नीले रंग में), और इसकी मैकलॉरिन श्रृंखला (लाल रंग में) के पहले n + 1 शब्दों के योग से इसका सुधार सन्निकटन। तो<br> n=0 देता है <math>f(x) = 1</math>,<br> n=1 <math>f(x) = 1 + x</math>,<br> n=2 <math>f(x)= 1 + x + x^2/2</math>, <br> n=3 <math>f(x)= 1 + x + x^2/2 + x^3/6</math>वगैरह-वगैरह.]]किसी भी [[बहुपद]] को किसी भी केंद्र c के चारों ओर घात श्रृंखला के रूप में आसानी से व्यक्त किया जा सकता है, हालाँकि सीमित रूप से कई गुणांकों को छोड़कर सभी शून्य होंगे क्योंकि परिभाषा के अनुसार घात श्रृंखला में अनंत रूप से कई पद होते हैं। उदाहरण के लिए, बहुपद <math display="inline">f(x) = x^2 + 2x + 3</math> केंद्र के चारों ओर घातश्रृंखला के रूप में लिखा जा सकता है <math display="inline">c = 0</math> जैसा
<math display="block">f(x) = 3 + 2 x + 1 x^2 + 0 x^3 + 0 x^4 + \cdots</math>
<math display="block">f(x) = 3 + 2 x + 1 x^2 + 0 x^3 + 0 x^4 + \cdots</math>
या केंद्र के आसपास <math display="inline">c = 1</math> जैसा
या केंद्र के आसपास <math display="inline">c = 1</math> जैसा
Line 27: Line 27:
ज्यामितीय श्रृंखला सूत्र
ज्यामितीय श्रृंखला सूत्र
<math display="block">\frac{1}{1 - x} = \sum_{n=0}^\infty x^n = 1 + x + x^2 + x^3 + \cdots,</math>
<math display="block">\frac{1}{1 - x} = \sum_{n=0}^\infty x^n = 1 + x + x^2 + x^3 + \cdots,</math>
जिसके लिए मान्य है <math display="inline">|x| < 1</math>, शक्ति श्रृंखला के सबसे महत्वपूर्ण उदाहरणों में से है, जैसे कि घातीय फ़ंक्शन सूत्र हैं
जिसके लिए मान्य है <math display="inline">|x| < 1</math>, घातश्रृंखला के सबसे महत्वपूर्ण उदाहरणों में से है, जैसे कि घातीय फ़ंक्शन सूत्र हैं
<math display="block">e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,</math>
<math display="block">e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,</math>
और साइन सूत्र
और साइन सूत्र
Line 33: Line 33:
सभी वास्तविक x के लिए मान्य।
सभी वास्तविक x के लिए मान्य।


ये शक्ति श्रृंखला भी टेलर श्रृंखला के उदाहरण हैं।
ये घातश्रृंखला भी टेलर श्रृंखला के उदाहरण हैं।


=== घातांक के समुच्चय पर ===
=== घातांक के समुच्चय पर ===


किसी शक्ति शृंखला में नकारात्मक शक्तियों की अनुमति नहीं है; उदाहरण के लिए, <math display="inline">1 + x^{-1} + x^{-2} + \cdots</math> इसे पावर श्रृंखला नहीं माना जाता है (हालाँकि यह [[लॉरेंट श्रृंखला]] है)। इसी प्रकार, भिन्नात्मक शक्तियाँ जैसे <math display="inline">x^\frac{1}{2}</math> अनुमति नहीं है (लेकिन [[पुइसेक्स श्रृंखला]] देखें)। गुणांक <math display="inline"> a_n</math> पर निर्भर रहने की अनुमति नहीं है {{nowrap|<math display="inline">x</math>,}} इस प्रकार उदाहरण के लिए:
किसी घातशृंखला में नकारात्मक शक्तियों की अनुमति नहीं है; उदाहरण के लिए, <math display="inline">1 + x^{-1} + x^{-2} + \cdots</math> इसे पावर श्रृंखला नहीं माना जाता है (हालाँकि यह [[लॉरेंट श्रृंखला]] है)। इसी प्रकार, भिन्नात्मक शक्तियाँ जैसे <math display="inline">x^\frac{1}{2}</math> अनुमति नहीं है (लेकिन [[पुइसेक्स श्रृंखला]] देखें)। गुणांक <math display="inline"> a_n</math> पर निर्भर रहने की अनुमति नहीं है {{nowrap|<math display="inline">x</math>,}} इस प्रकार उदाहरण के लिए:
<math display="block">\sin(x) x + \sin(2x) x^2 + \sin(3x) x^3 + \cdots </math>
<math display="block">\sin(x) x + \sin(2x) x^2 + \sin(3x) x^3 + \cdots </math>
कोई शक्ति शृंखला नहीं है.
कोई घातशृंखला नहीं है.


==अभिसरण की त्रिज्या==
==अभिसरण की त्रिज्या==


शक्ति श्रृंखला <math display="inline"> \sum_{n=0}^\infty a_n(x-c)^n</math> चर के कुछ मानों के लिए [[अभिसरण श्रृंखला]] है {{math|''x''}}, जिसमें हमेशा सम्मिलित रहेगा {{math|1=''x'' = ''c''}} (हमेशा की तरह, <math>(x-c)^0</math> के रूप में मूल्यांकन करता है {{val|1}} और श्रृंखला का योग इस प्रकार है <math>a_0</math> के लिए {{math|1=''x'' = ''c''}}). श्रृंखला अन्य मानों के लिए श्रृंखला को भिन्न कर सकती है {{mvar|x}}. अगर {{math|''c''}} अभिसरण का मात्र बिंदु नहीं है, फिर हमेशा संख्या होती है {{math|''r''}} साथ {{math|0 < ''r'' ≤ ∞}} ऐसा कि शृंखला जब भी अभिसरित होती है {{math|{{abs|''x'' – ''c''}} < ''r''}} और जब भी विचलन होता है {{math|{{abs|''x'' – ''c''}} > ''r''}}. जो नंबर {{math|''r''}} को शक्ति श्रृंखला के [[अभिसरण की त्रिज्या]] कहा जाता है; सामान्यतः इसे इस प्रकार दिया जाता है
घातश्रृंखला <math display="inline"> \sum_{n=0}^\infty a_n(x-c)^n</math> चर के कुछ मानों के लिए [[अभिसरण श्रृंखला]] है {{math|''x''}}, जिसमें हमेशा सम्मिलित रहेगा {{math|1=''x'' = ''c''}} (हमेशा की तरह, <math>(x-c)^0</math> के रूप में मूल्यांकन करता है {{val|1}} और श्रृंखला का योग इस प्रकार है <math>a_0</math> के लिए {{math|1=''x'' = ''c''}}). श्रृंखला अन्य मानों के लिए श्रृंखला को भिन्न कर सकती है {{mvar|x}}. अगर {{math|''c''}} अभिसरण का मात्र बिंदु नहीं है, फिर हमेशा संख्या होती है {{math|''r''}} साथ {{math|0 < ''r'' ≤ ∞}} ऐसा कि शृंखला जब भी अभिसरित होती है {{math|{{abs|''x'' – ''c''}} < ''r''}} और जब भी विचलन होता है {{math|{{abs|''x'' – ''c''}} > ''r''}}. जो नंबर {{math|''r''}} को घातश्रृंखला के [[अभिसरण की त्रिज्या]] कहा जाता है; सामान्यतः इसे इस प्रकार दिया जाता है
<math display="block">r = \liminf_{n\to\infty} \left|a_n\right|^{-\frac{1}{n}}</math>
<math display="block">r = \liminf_{n\to\infty} \left|a_n\right|^{-\frac{1}{n}}</math>
या, समकक्ष,
या, समकक्ष,
Line 64: Line 64:
यह सत्य नहीं है कि यदि दो घात श्रृंखला है <math display="inline">\sum_{n=0}^\infty a_n x^n</math> और <math display="inline">\sum_{n=0}^\infty b_n x^n</math> तब अभिसरण की त्रिज्या समान होती है <math display="inline">\sum_{n=0}^\infty \left(a_n + b_n\right) x^n</math> अभिसरण की यह त्रिज्या भी है। अगर <math display="inline">a_n = (-1)^n</math> और <math display="inline">b_n = (-1)^{n+1} \left(1 - \frac{1}{3^n}\right)</math>, तो दोनों श्रृंखलाओं में 1 के अभिसरण की समान त्रिज्या है, लेकिन श्रृंखला <math display="inline">\sum_{n=0}^\infty \left(a_n + b_n\right) x^n = \sum_{n=0}^\infty \frac{(-1)^n}{3^n} x^n</math> अभिसरण की त्रिज्या 3 है।
यह सत्य नहीं है कि यदि दो घात श्रृंखला है <math display="inline">\sum_{n=0}^\infty a_n x^n</math> और <math display="inline">\sum_{n=0}^\infty b_n x^n</math> तब अभिसरण की त्रिज्या समान होती है <math display="inline">\sum_{n=0}^\infty \left(a_n + b_n\right) x^n</math> अभिसरण की यह त्रिज्या भी है। अगर <math display="inline">a_n = (-1)^n</math> और <math display="inline">b_n = (-1)^{n+1} \left(1 - \frac{1}{3^n}\right)</math>, तो दोनों श्रृंखलाओं में 1 के अभिसरण की समान त्रिज्या है, लेकिन श्रृंखला <math display="inline">\sum_{n=0}^\infty \left(a_n + b_n\right) x^n = \sum_{n=0}^\infty \frac{(-1)^n}{3^n} x^n</math> अभिसरण की त्रिज्या 3 है।


दो शक्ति श्रृंखलाओं के योग में, कम से कम, दो श्रृंखलाओं के अभिसरण की दो त्रिज्याओं में से छोटी त्रिज्या के अभिसरण की त्रिज्या होगी (और यह दोनों में से किसी से अधिक हो सकती है, जैसा कि ऊपर दिए गए उदाहरण में देखा गया है)।<ref>Erwin Kreyszig, Advanced Engineering Mathematics, 8th ed, page 747</ref>
दो घातश्रृंखलाओं के योग में, कम से कम, दो श्रृंखलाओं के अभिसरण की दो त्रिज्याओं में से छोटी त्रिज्या के अभिसरण की त्रिज्या होगी (और यह दोनों में से किसी से अधिक हो सकती है, जैसा कि ऊपर दिए गए उदाहरण में देखा गया है)।<ref>Erwin Kreyszig, Advanced Engineering Mathematics, 8th ed, page 747</ref>
=== गुणा और भाग ===
=== गुणा और भाग ===
के लिए समान परिभाषाओं के साथ <math>f(x)</math> और <math>g(x)</math>, उत्पाद की शक्ति श्रृंखला और कार्यों का भागफल निम्नानुसार प्राप्त किया जा सकता है:
के लिए समान परिभाषाओं के साथ <math>f(x)</math> और <math>g(x)</math>, उत्पाद की घातश्रृंखला और कार्यों का भागफल निम्नानुसार प्राप्त किया जा सकता है:
<math display="block">\begin{align}
<math display="block">\begin{align}
   f(x)g(x) &= \left(\sum_{n=0}^\infty a_n (x-c)^n\right)\left(\sum_{n=0}^\infty b_n (x - c)^n\right) \\
   f(x)g(x) &= \left(\sum_{n=0}^\infty a_n (x-c)^n\right)\left(\sum_{n=0}^\infty b_n (x - c)^n\right) \\
Line 89: Line 89:
a_0    &0    &0    &\cdots&b_0\end{vmatrix}</math>
a_0    &0    &0    &\cdots&b_0\end{vmatrix}</math>
===विभेदीकरण और ीकरण===
===विभेदीकरण और ीकरण===
बार समारोह <math>f(x)</math> उपरोक्त के अनुसार शक्ति श्रृंखला के रूप में दिया गया है, यह अभिसरण के क्षेत्र के [[आंतरिक (टोपोलॉजी)]] पर व्युत्पन्न है। प्रत्येक पद को अलग-अलग मानकर इसे आसानी से व्युत्पन्न और [[अभिन्न]] बनाया जा सकता है:
बार समारोह <math>f(x)</math> उपरोक्त के अनुसार घातश्रृंखला के रूप में दिया गया है, यह अभिसरण के क्षेत्र के [[आंतरिक (टोपोलॉजी)]] पर व्युत्पन्न है। प्रत्येक पद को अलग-अलग मानकर इसे आसानी से व्युत्पन्न और [[अभिन्न]] बनाया जा सकता है:
<math display="block">\begin{align}
<math display="block">\begin{align}
     f'(x) &= \sum_{n=1}^\infty a_n n (x - c)^{n-1} = \sum_{n=0}^\infty a_{n+1} (n + 1) (x - c)^n, \\
     f'(x) &= \sum_{n=1}^\infty a_n n (x - c)^{n-1} = \sum_{n=0}^\infty a_{n+1} (n + 1) (x - c)^n, \\
Line 98: Line 98:
== विश्लेषणात्मक फलन ==
== विश्लेषणात्मक फलन ==
{{main|विश्लेषणात्मक फलन }}
{{main|विश्लेषणात्मक फलन }}
'आर' या 'सी' के कुछ खुले सेट यू पर परिभाषित फ़ंक्शन एफ को विश्लेषणात्मक फ़ंक्शन कहा जाता है यदि यह स्थानीय रूप से अभिसरण शक्ति श्रृंखला द्वारा दिया जाता है। इसका मतलब यह है कि प्रत्येक a ∈ U में खुला [[पड़ोस (टोपोलॉजी)]] V ⊆ U है, जैसे कि केंद्र a के साथ शक्ति श्रृंखला उपस्थित है जो प्रत्येक x ∈ V के लिए f(x) में परिवर्तित होती है।
'आर' या 'सी' के कुछ खुले सेट यू पर परिभाषित फ़ंक्शन एफ को विश्लेषणात्मक फ़ंक्शन कहा जाता है यदि यह स्थानीय रूप से अभिसरण घातश्रृंखला द्वारा दिया जाता है। इसका मतलब यह है कि प्रत्येक a ∈ U में खुला [[पड़ोस (टोपोलॉजी)]] V ⊆ U है, जैसे कि केंद्र a के साथ घातश्रृंखला उपस्थित है जो प्रत्येक x ∈ V के लिए f(x) में परिवर्तित होती है।


अभिसरण की सकारात्मक त्रिज्या वाली प्रत्येक शक्ति श्रृंखला अपने अभिसरण क्षेत्र के [[टोपोलॉजिकल इंटीरियर]] पर विश्लेषणात्मक है। सभी [[होलोमोर्फिक फ़ंक्शन]] जटिल-विश्लेषणात्मक हैं। [[विश्लेषणात्मक कार्य]]ों के योग और उत्पाद विश्लेषणात्मक होते हैं, जैसे कि भागफल तब तक विश्लेषणात्मक होते हैं जब तक हर गैर-शून्य होता है।
अभिसरण की सकारात्मक त्रिज्या वाली प्रत्येक घातश्रृंखला अपने अभिसरण क्षेत्र के [[टोपोलॉजिकल इंटीरियर]] पर विश्लेषणात्मक है। सभी [[होलोमोर्फिक फ़ंक्शन]] जटिल-विश्लेषणात्मक हैं। [[विश्लेषणात्मक कार्य]]ों के योग और उत्पाद विश्लेषणात्मक होते हैं, जैसे कि भागफल तब तक विश्लेषणात्मक होते हैं जब तक हर गैर-शून्य होता है।


यदि कोई फ़ंक्शन विश्लेषणात्मक है, तो यह असीम रूप से भिन्न होता है, लेकिन वास्तविक मामले में इसका विपरीत सामान्यतः  सत्य नहीं होता है। विश्लेषणात्मक फ़ंक्शन के लिए, गुणांक a<sub>''n''</sub> के रूप में गणना की जा सकती है
यदि कोई फ़ंक्शन विश्लेषणात्मक है, तो यह असीम रूप से भिन्न होता है, लेकिन वास्तविक मामले में इसका विपरीत सामान्यतः  सत्य नहीं होता है। विश्लेषणात्मक फ़ंक्शन के लिए, गुणांक a<sub>''n''</sub> के रूप में गणना की जा सकती है
Line 108: Line 108:
विश्लेषणात्मक फ़ंक्शन का वैश्विक रूप निम्नलिखित अर्थों में उसके स्थानीय व्यवहार से पूरी तरह से निर्धारित होता है: यदि एफ और जी दो विश्लेषणात्मक फ़ंक्शन हैं जो ही कनेक्टिविटी ओपन सेट यू पर परिभाषित हैं, और यदि कोई तत्व उपस्थित है {{math|''c'' ∈ ''U''}} ऐसा है कि {{math|1=''f''{{i sup|(''n'')}}(''c'') = ''g''{{i sup|(''n'')}}(''c'')}} सभी के लिए {{math|''n'' ≥ 0}}, तब {{math|1=''f''(''x'') = ''g''(''x'')}} सभी के लिए {{math|''x'' ∈ ''U''}}.
विश्लेषणात्मक फ़ंक्शन का वैश्विक रूप निम्नलिखित अर्थों में उसके स्थानीय व्यवहार से पूरी तरह से निर्धारित होता है: यदि एफ और जी दो विश्लेषणात्मक फ़ंक्शन हैं जो ही कनेक्टिविटी ओपन सेट यू पर परिभाषित हैं, और यदि कोई तत्व उपस्थित है {{math|''c'' ∈ ''U''}} ऐसा है कि {{math|1=''f''{{i sup|(''n'')}}(''c'') = ''g''{{i sup|(''n'')}}(''c'')}} सभी के लिए {{math|''n'' ≥ 0}}, तब {{math|1=''f''(''x'') = ''g''(''x'')}} सभी के लिए {{math|''x'' ∈ ''U''}}.


यदि अभिसरण आर की त्रिज्या के साथ शक्ति श्रृंखला दी गई है, तो कोई श्रृंखला की [[विश्लेषणात्मक निरंतरता]] पर विचार कर सकता है, अर्थात  विश्लेषणात्मक कार्य एफ जो कि बड़े सेटों पर परिभाषित होते हैं {{math|{{mset| ''x'' | {{abs|''x'' − ''c''}} < ''r'' }}}} और इस सेट पर दी गई पावर श्रृंखला से सहमत हूं। संख्या r निम्नलिखित अर्थ में अधिकतम है: हमेशा जटिल संख्या उपस्थित होती है {{mvar|x}} साथ {{math|1={{abs|''x'' − ''c''}} = ''r''}} ऐसा कि श्रृंखला की किसी भी विश्लेषणात्मक निरंतरता को परिभाषित नहीं किया जा सकता है {{mvar|x}}.
यदि अभिसरण आर की त्रिज्या के साथ घातश्रृंखला दी गई है, तो कोई श्रृंखला की [[विश्लेषणात्मक निरंतरता]] पर विचार कर सकता है, अर्थात  विश्लेषणात्मक कार्य एफ जो कि बड़े सेटों पर परिभाषित होते हैं {{math|{{mset| ''x'' | {{abs|''x'' − ''c''}} < ''r'' }}}} और इस सेट पर दी गई पावर श्रृंखला से सहमत हूं। संख्या r निम्नलिखित अर्थ में अधिकतम है: हमेशा जटिल संख्या उपस्थित होती है {{mvar|x}} साथ {{math|1={{abs|''x'' − ''c''}} = ''r''}} ऐसा कि श्रृंखला की किसी भी विश्लेषणात्मक निरंतरता को परिभाषित नहीं किया जा सकता है {{mvar|x}}.


विश्लेषणात्मक फ़ंक्शन के व्युत्क्रम फ़ंक्शन की शक्ति श्रृंखला विस्तार को [[लैग्रेंज व्युत्क्रम प्रमेय]] का उपयोग करके निर्धारित किया जा सकता है।
विश्लेषणात्मक फ़ंक्शन के व्युत्क्रम फ़ंक्शन की घातश्रृंखला विस्तार को [[लैग्रेंज व्युत्क्रम प्रमेय]] का उपयोग करके निर्धारित किया जा सकता है।


=== सीमा के निकट व्यवहार ===
=== सीमा के निकट व्यवहार ===


अभिसरण की सकारात्मक त्रिज्या के साथ शक्ति श्रृंखला का योग अभिसरण डिस्क के आंतरिक भाग में प्रत्येक बिंदु पर विश्लेषणात्मक कार्य है। हालाँकि, उस डिस्क की सीमा पर बिंदुओं पर भिन्न व्यवहार हो सकता है। उदाहरण के लिए:
अभिसरण की सकारात्मक त्रिज्या के साथ घातश्रृंखला का योग अभिसरण डिस्क के आंतरिक भाग में प्रत्येक बिंदु पर विश्लेषणात्मक कार्य है। हालाँकि, उस डिस्क की सीमा पर बिंदुओं पर भिन्न व्यवहार हो सकता है। उदाहरण के लिए:


# विचलन जबकि योग विश्लेषणात्मक फ़ंक्शन तक विस्तारित होता है: <math display="inline">\sum_{n=0}^{\infty}z^n</math> अभिसरण की त्रिज्या के बराबर है <math>1</math> और हर बिंदु पर अलग हो जाता है <math>|z|=1</math>. फिर भी, योग <math>|z|<1</math> है <math display="inline">\frac{1}{1-z}</math>को छोड़कर, जो विमान के हर बिंदु पर विश्लेषणात्मक है <math>z=1</math>.
# विचलन जबकि योग विश्लेषणात्मक फ़ंक्शन तक विस्तारित होता है: <math display="inline">\sum_{n=0}^{\infty}z^n</math> अभिसरण की त्रिज्या के समान है <math>1</math> और हर बिंदु पर अलग हो जाता है <math>|z|=1</math>. फिर भी, योग <math>|z|<1</math> है <math display="inline">\frac{1}{1-z}</math>को छोड़कर, जो विमान के हर बिंदु पर विश्लेषणात्मक है <math>z=1</math>.
# कुछ बिंदुओं पर अभिसरण दूसरों पर भिन्न: <math display="inline">\sum_{n=1}^{\infty}\frac{z^n}{n}</math> अभिसरण की त्रिज्या है <math>1</math>. इसके लिए अभिसरण होता है <math>z=-1</math>, जबकि यह भिन्न होता है <math>z=1</math>.
# कुछ बिंदुओं पर अभिसरण दूसरों पर भिन्न: <math display="inline">\sum_{n=1}^{\infty}\frac{z^n}{n}</math> अभिसरण की त्रिज्या है <math>1</math>. इसके लिए अभिसरण होता है <math>z=-1</math>, जबकि यह भिन्न होता है <math>z=1</math>.
# सीमा के प्रत्येक बिंदु पर पूर्ण अभिसरण: <math display="inline">\sum_{n=1}^{\infty}\frac{z^n}{n^2}</math> अभिसरण की त्रिज्या है <math>1</math>, जबकि यह हर बिंदु पर पूर्णतः और समान रूप से अभिसरित होता है <math>|z|=1</math> हार्मोनिक श्रृंखला (गणित) के साथ लागू [[वीयरस्ट्रैस एम-टेस्ट]] के कारण#p-श्रृंखला|हाइपर-हार्मोनिक अभिसरण श्रृंखला <math display="inline">\sum_{n=1}^{\infty}\frac{1}{n^2}</math>.
# सीमा के प्रत्येक बिंदु पर पूर्ण अभिसरण: <math display="inline">\sum_{n=1}^{\infty}\frac{z^n}{n^2}</math> अभिसरण की त्रिज्या है <math>1</math>, जबकि यह हर बिंदु पर पूर्णतः और समान रूप से अभिसरित होता है <math>|z|=1</math> हार्मोनिक श्रृंखला (गणित) के साथ लागू [[वीयरस्ट्रैस एम-टेस्ट]] के कारण#p-श्रृंखला|हाइपर-हार्मोनिक अभिसरण श्रृंखला <math display="inline">\sum_{n=1}^{\infty}\frac{1}{n^2}</math>.
# अभिसरण की डिस्क के बंद होने पर अभिसरण लेकिन निरंतर योग नहीं: वाकलॉ सिएरपिंस्की|सिएरपिंस्की ने उदाहरण दिया<ref>{{cite journal|author=Wacław Sierpiński|title=Sur une série potentielle qui, étant convergente en tout point de son cercle de convergence, représente sur ce cercle une fonction discontinue. (French)|journal=Rendiconti del Circolo Matematico di Palermo| url=https://zbmath.org/?q=an:46.1466.03|year=1916|volume=41|publisher=Palermo Rend.|pages=187–190 | doi=10.1007/BF03018294 |jfm=46.1466.03 | s2cid=121218640| author-link=Wacław Sierpiński}}</ref> अभिसरण की त्रिज्या के साथ शक्ति श्रृंखला की <math>1</math>, सभी बिंदुओं पर अभिसरण <math>|z|=1</math>, लेकिन योग असीमित कार्य है और, विशेष रूप से, असंतत है। सीमा बिंदु पर तरफा निरंतरता के लिए पर्याप्त शर्त हाबिल के प्रमेय द्वारा दी गई है।
# अभिसरण की डिस्क के बंद होने पर अभिसरण लेकिन निरंतर योग नहीं: वाकलॉ सिएरपिंस्की|सिएरपिंस्की ने उदाहरण दिया<ref>{{cite journal|author=Wacław Sierpiński|title=Sur une série potentielle qui, étant convergente en tout point de son cercle de convergence, représente sur ce cercle une fonction discontinue. (French)|journal=Rendiconti del Circolo Matematico di Palermo| url=https://zbmath.org/?q=an:46.1466.03|year=1916|volume=41|publisher=Palermo Rend.|pages=187–190 | doi=10.1007/BF03018294 |jfm=46.1466.03 | s2cid=121218640| author-link=Wacław Sierpiński}}</ref> अभिसरण की त्रिज्या के साथ घातश्रृंखला की <math>1</math>, सभी बिंदुओं पर अभिसरण <math>|z|=1</math>, लेकिन योग असीमित कार्य है और, विशेष रूप से, असंतत है। सीमा बिंदु पर तरफा निरंतरता के लिए पर्याप्त शर्त हाबिल के प्रमेय द्वारा दी गई है।


== औपचारिक शक्ति श्रृंखला ==
== औपचारिक घातश्रृंखला ==
{{main|औपचारिक शक्ति श्रृंखला}}
{{main|औपचारिक शक्ति श्रृंखला}}
[[अमूर्त बीजगणित]] में, व्यक्ति वास्तविक और जटिल संख्याओं के क्षेत्र (गणित) तक सीमित हुए बिना और अभिसरण के बारे में बात किए बिना शक्ति श्रृंखला के सार को पकड़ने का प्रयास करता है। यह औपचारिक शक्ति श्रृंखला की अवधारणा की ओर ले जाता है, जो बीजगणितीय कॉम्बिनेटरिक्स में महान उपयोगिता की अवधारणा है।
[[अमूर्त बीजगणित]] में, व्यक्ति वास्तविक और जटिल संख्याओं के क्षेत्र (गणित) तक सीमित हुए बिना और अभिसरण के बारे में बात किए बिना घातश्रृंखला के सार को पकड़ने का प्रयास करता है। यह औपचारिक घातश्रृंखला की अवधारणा की ओर ले जाता है, जो बीजगणितीय कॉम्बिनेटरिक्स में महान उपयोगिता की अवधारणा है।


== कई चर में पावर श्रृंखला ==
== कई चर में पावर श्रृंखला ==
बहुपरिवर्तनीय कलन के प्रयोजनों के लिए सिद्धांत का विस्तार आवश्यक है। यहाँ शक्ति श्रृंखला को रूप की अनंत श्रृंखला के रूप में परिभाषित किया गया है
बहुपरिवर्तनीय कलन के प्रयोजनों के लिए सिद्धांत का विस्तार आवश्यक है। यहाँ घातश्रृंखला को रूप की अनंत श्रृंखला के रूप में परिभाषित किया गया है
<math display="block">f(x_1, \dots, x_n) = \sum_{j_1, \dots, j_n = 0}^\infty a_{j_1, \dots, j_n} \prod_{k=1}^n (x_k - c_k)^{j_k},</math>
<math display="block">f(x_1, \dots, x_n) = \sum_{j_1, \dots, j_n = 0}^\infty a_{j_1, \dots, j_n} \prod_{k=1}^n (x_k - c_k)^{j_k},</math>
कहाँ {{math|1=''j'' = (''j''<sub>1</sub>, …, ''j''<sub>''n''</sub>)}} प्राकृतिक संख्याओं, गुणांकों का सदिश है {{math|''a''<sub>(''j''<sub>1</sub>, …, ''j''<sub>''n''</sub>)</sub>}} सामान्यतः वास्तविक या सम्मिश्र संख्याएँ और केंद्र होते हैं {{math|1=''c'' = (''c''<sub>1</sub>, …, ''c''<sub>''n''</sub>)}} और तर्क {{math|1=''x'' = (''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>)}} सामान्यतः वास्तविक या जटिल वेक्टर होते हैं। प्रतीक <math>\Pi</math> गुणन#कैपिटल पाई नोटेशन है, जो गुणन को दर्शाता है। इसे अधिक सुविधाजनक [[ बहु सूचकांक |बहु सूचकांक]] नोटेशन में लिखा जा सकता है
कहाँ {{math|1=''j'' = (''j''<sub>1</sub>, …, ''j''<sub>''n''</sub>)}} प्राकृतिक संख्याओं, गुणांकों का सदिश है {{math|''a''<sub>(''j''<sub>1</sub>, …, ''j''<sub>''n''</sub>)</sub>}} सामान्यतः वास्तविक या सम्मिश्र संख्याएँ और केंद्र होते हैं {{math|1=''c'' = (''c''<sub>1</sub>, …, ''c''<sub>''n''</sub>)}} और तर्क {{math|1=''x'' = (''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>)}} सामान्यतः वास्तविक या जटिल वेक्टर होते हैं। प्रतीक <math>\Pi</math> गुणन#कैपिटल पाई नोटेशन है, जो गुणन को दर्शाता है। इसे अधिक सुविधाजनक [[ बहु सूचकांक |बहु सूचकांक]] नोटेशन में लिखा जा सकता है
Line 132: Line 132:
कहाँ <math>\N</math> [[प्राकृतिक संख्या]]ओं का समुच्चय है, इत्यादि <math>\N^n</math> प्राकृतिक संख्याओं के क्रमित n-टुपल्स का समुच्चय है।
कहाँ <math>\N</math> [[प्राकृतिक संख्या]]ओं का समुच्चय है, इत्यादि <math>\N^n</math> प्राकृतिक संख्याओं के क्रमित n-टुपल्स का समुच्चय है।


ऐसी श्रृंखला का सिद्धांत ल-चर श्रृंखला की तुलना में अधिक पेचीदा है, जिसमें अभिसरण के अधिक जटिल क्षेत्र हैं। उदाहरण के लिए, पावर श्रृंखला <math display="inline">\sum_{n=0}^\infty x_1^n x_2^n</math> सेट में बिल्कुल अभिसरण है <math>\{ (x_1, x_2): |x_1 x_2| < 1\}</math> दो अतिपरवलय के बीच. (यह लॉग-उत्तल सेट का उदाहरण है, इस अर्थ में कि बिंदुओं का सेट <math>(\log |x_1|, \log |x_2|)</math>, कहाँ <math>(x_1, x_2)</math> उपरोक्त क्षेत्र में स्थित, उत्तल समुच्चय है। अधिक सामान्यतः, कोई यह दिखा सकता है कि जब c=0, पूर्ण अभिसरण के क्षेत्र का आंतरिक भाग हमेशा इस अर्थ में लॉग-उत्तल सेट होता है।) दूसरी ओर, अभिसरण के इस क्षेत्र के आंतरिक भाग में कोई अंतर और ीकृत हो सकता है श्रृंखला चिह्न के अंतर्गत, ठीक वैसे ही जैसे कोई सामान्य शक्ति श्रृंखला के साथ कर सकता है।<ref>{{cite journal |doi=10.1090/S0002-9904-1948-08994-7|title=उत्तल कार्य|year=1948|last1=Beckenbach|first1=E. F.|journal=Bulletin of the American Mathematical Society|volume=54|issue=5|pages=439–460|doi-access=free}}</ref>
ऐसी श्रृंखला का सिद्धांत ल-चर श्रृंखला की तुलना में अधिक पेचीदा है, जिसमें अभिसरण के अधिक जटिल क्षेत्र हैं। उदाहरण के लिए, पावर श्रृंखला <math display="inline">\sum_{n=0}^\infty x_1^n x_2^n</math> सेट में बिल्कुल अभिसरण है <math>\{ (x_1, x_2): |x_1 x_2| < 1\}</math> दो अतिपरवलय के बीच. (यह लॉग-उत्तल सेट का उदाहरण है, इस अर्थ में कि बिंदुओं का सेट <math>(\log |x_1|, \log |x_2|)</math>, कहाँ <math>(x_1, x_2)</math> उपरोक्त क्षेत्र में स्थित, उत्तल समुच्चय है। अधिक सामान्यतः, कोई यह दिखा सकता है कि जब c=0, पूर्ण अभिसरण के क्षेत्र का आंतरिक भाग हमेशा इस अर्थ में लॉग-उत्तल सेट होता है।) दूसरी ओर, अभिसरण के इस क्षेत्र के आंतरिक भाग में कोई अंतर और ीकृत हो सकता है श्रृंखला चिह्न के अंतर्गत, ठीक वैसे ही जैसे कोई सामान्य घातश्रृंखला के साथ कर सकता है।<ref>{{cite journal |doi=10.1090/S0002-9904-1948-08994-7|title=उत्तल कार्य|year=1948|last1=Beckenbach|first1=E. F.|journal=Bulletin of the American Mathematical Society|volume=54|issue=5|pages=439–460|doi-access=free}}</ref>
== शक्ति श्रृंखला का क्रम ==
== घातश्रृंखला का क्रम ==
होने देना {{mvar|α}} पावर श्रृंखला के लिए बहु-सूचकांक बनें {{math|''f''(''x''<sub>1</sub>, ''x''<sub>2</sub>, …, ''x''<sub>''n''</sub>)}}. घात श्रेणी ''f'' के क्रम को न्यूनतम मान के रूप में परिभाषित किया गया है <math>r</math> ऐसा है कि है<sub>''α''</sub> ≠ 0 के साथ <math>r = |\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n</math>, या <math>\infty</math> यदि f ≡ 0. विशेष रूप से, ल चर x में घात श्रृंखला f(x) के लिए, f का क्रम गैर-शून्य गुणांक के साथ x की सबसे छोटी शक्ति है। यह परिभाषा आसानी से लॉरेंट श्रृंखला तक फैली हुई है।
होने देना {{mvar|α}} पावर श्रृंखला के लिए बहु-सूचकांक बनें {{math|''f''(''x''<sub>1</sub>, ''x''<sub>2</sub>, …, ''x''<sub>''n''</sub>)}}. घात श्रेणी ''f'' के क्रम को न्यूनतम मान के रूप में परिभाषित किया गया है <math>r</math> ऐसा है कि है<sub>''α''</sub> ≠ 0 के साथ <math>r = |\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n</math>, या <math>\infty</math> यदि f ≡ 0. विशेष रूप से, ल चर x में घात श्रृंखला f(x) के लिए, f का क्रम गैर-शून्य गुणांक के साथ x की सबसे छोटी घातहै। यह परिभाषा आसानी से लॉरेंट श्रृंखला तक फैली हुई है।


== टिप्पणियाँ ==
== टिप्पणियाँ ==

Revision as of 09:41, 5 July 2023

गणित में, घात श्रृंखला (चर में) रूप की अनंत श्रृंखला होती है:

जहाँ anवें पद के गुणांक का प्रतिनिधित्व करता है और c स्थिरांक है। घात श्रृंखला गणितीय विश्लेषण में उपयोगी होती है, जहां वे असीम रूप से भिन्न कार्यों की टेलर श्रृंखला के रूप में उत्पन्न होती हैं। वास्तव में, बोरेल की प्रमेय का तात्पर्य है कि प्रत्येक घात श्रृंखला कुछ सुचारु कार्य की टेलर श्रृंखला है।

कई स्थितियों में, c (श्रृंखला का केंद्र) शून्य के समान होता है, उदाहरण के लिए मैकलॉरिन श्रृंखला पर विचार करते समय होता है। ऐसी स्थिति में, घात श्रृंखला सरल रूप लेती है:

गणितीय विश्लेषण में उनकी भूमिका से परे, घात श्रृंखला साहचर्य में जनरेटिंग फ़ंक्शन (एक प्रकार की औपचारिक घात श्रृंखला) और इलेक्ट्रॉनिक इंजीनियरिंग (जेड-ट्रांसफॉर्म के नाम के अनुसार) के रूप में भी होती है। वास्तविक संख्याओं के लिए परिचित दशमलव संकेतन को पूर्णांक गुणांक के साथ घात श्रृंखला के उदाहरण के रूप में भी देखा जा सकता है, किन्तु तर्क x के साथ 110 पर निश्चित किया गया है। संख्या सिद्धांत में, पी-एडिक संख्या|पी-एडिक संख्याओं की अवधारणा भी घात श्रृंखला से निकटता से संबंधित है।

उदाहरण

बहुपद

घातीय फ़ंक्शन (नीले रंग में), और इसकी मैकलॉरिन श्रृंखला (लाल रंग में) के पहले n + 1 शब्दों के योग से इसका सुधार सन्निकटन। तो
n=0 देता है ,
n=1 ,
n=2 ,
n=3 वगैरह-वगैरह.

किसी भी बहुपद को किसी भी केंद्र c के चारों ओर घात श्रृंखला के रूप में आसानी से व्यक्त किया जा सकता है, हालाँकि सीमित रूप से कई गुणांकों को छोड़कर सभी शून्य होंगे क्योंकि परिभाषा के अनुसार घात श्रृंखला में अनंत रूप से कई पद होते हैं। उदाहरण के लिए, बहुपद केंद्र के चारों ओर घातश्रृंखला के रूप में लिखा जा सकता है जैसा

या केंद्र के आसपास जैसा
इसका कारण टेलर श्रृंखला के चारों ओर f(x) का विस्तार है है

जैसा और गैर-शून्य व्युत्पन्न हैं , इसलिए और , निरंतर।

या वास्तव में किसी अन्य केंद्र के आसपास विस्तार संभव है।[1] कोई घात श्रृंखला को अनंत डिग्री के बहुपदों की तरह देख सकता है, हालाँकि घात श्रृंखला बहुपद नहीं हैं।

ज्यामितीय श्रृंखला, घातांकीय फलन और ज्या

ज्यामितीय श्रृंखला सूत्र

जिसके लिए मान्य है , घातश्रृंखला के सबसे महत्वपूर्ण उदाहरणों में से है, जैसे कि घातीय फ़ंक्शन सूत्र हैं
और साइन सूत्र
सभी वास्तविक x के लिए मान्य।

ये घातश्रृंखला भी टेलर श्रृंखला के उदाहरण हैं।

घातांक के समुच्चय पर

किसी घातशृंखला में नकारात्मक शक्तियों की अनुमति नहीं है; उदाहरण के लिए, इसे पावर श्रृंखला नहीं माना जाता है (हालाँकि यह लॉरेंट श्रृंखला है)। इसी प्रकार, भिन्नात्मक शक्तियाँ जैसे अनुमति नहीं है (लेकिन पुइसेक्स श्रृंखला देखें)। गुणांक पर निर्भर रहने की अनुमति नहीं है , इस प्रकार उदाहरण के लिए:

कोई घातशृंखला नहीं है.

अभिसरण की त्रिज्या

घातश्रृंखला चर के कुछ मानों के लिए अभिसरण श्रृंखला है x, जिसमें हमेशा सम्मिलित रहेगा x = c (हमेशा की तरह, के रूप में मूल्यांकन करता है 1 और श्रृंखला का योग इस प्रकार है के लिए x = c). श्रृंखला अन्य मानों के लिए श्रृंखला को भिन्न कर सकती है x. अगर c अभिसरण का मात्र बिंदु नहीं है, फिर हमेशा संख्या होती है r साथ 0 < r ≤ ∞ ऐसा कि शृंखला जब भी अभिसरित होती है |xc| < r और जब भी विचलन होता है |xc| > r. जो नंबर r को घातश्रृंखला के अभिसरण की त्रिज्या कहा जाता है; सामान्यतः इसे इस प्रकार दिया जाता है

या, समकक्ष,
(यह कॉची-हैडामर्ड प्रमेय है; अंकन की व्याख्या के लिए सीमा श्रेष्ठ और सीमा निम्न देखें)। रिश्ता
यदि यह सीमा उपस्थित है तो वह भी संतुष्ट है।

सम्मिश्र संख्याओं का समुच्चय इस प्रकार है |xc| < rश्रृंखला की अभिसरण डिस्क कहलाती है। अभिसरण की डिस्क के अंदर श्रृंखला पूर्ण अभिसरण, और अभिसरण की डिस्क के प्रत्येक सघन स्थान उपसमुच्चय पर समान अभिसरण।

के लिए |xc| = r, श्रृंखला के अभिसरण पर कोई सामान्य कथन नहीं है। हालाँकि, एबेल के प्रमेय में कहा गया है कि यदि श्रृंखला कुछ मूल्य के लिए अभिसरण है z ऐसा है कि |zc| = r, तो श्रृंखला का योग x = z श्रृंखला के योग की सीमा है x = c + t (zc) कहाँ t से कम वास्तविक चर है 1 ऐसा होता है 1.

पावर श्रृंखला पर संचालन

जोड़ और घटाव

जब दो फलन f और g को ही केंद्र c के चारों ओर घात श्रृंखला में विघटित किया जाता है, तो फलन के योग या अंतर की घात श्रृंखला शब्दवार जोड़ और घटाव द्वारा प्राप्त की जा सकती है। अर्थात यदि

और
तब
यह सत्य नहीं है कि यदि दो घात श्रृंखला है और तब अभिसरण की त्रिज्या समान होती है अभिसरण की यह त्रिज्या भी है। अगर और , तो दोनों श्रृंखलाओं में 1 के अभिसरण की समान त्रिज्या है, लेकिन श्रृंखला अभिसरण की त्रिज्या 3 है।

दो घातश्रृंखलाओं के योग में, कम से कम, दो श्रृंखलाओं के अभिसरण की दो त्रिज्याओं में से छोटी त्रिज्या के अभिसरण की त्रिज्या होगी (और यह दोनों में से किसी से अधिक हो सकती है, जैसा कि ऊपर दिए गए उदाहरण में देखा गया है)।[2]

गुणा और भाग

के लिए समान परिभाषाओं के साथ और , उत्पाद की घातश्रृंखला और कार्यों का भागफल निम्नानुसार प्राप्त किया जा सकता है:

क्रम अनुक्रमों के कनवल्शन के रूप में जाना जाता है और .

विभाजन के लिए, यदि कोई अनुक्रम को परिभाषित करता है द्वारा

तब

और कोई भी शर्तों को पुनरावर्ती रूप से हल कर सकता है गुणांकों की तुलना करके।

संगत समीकरणों को हल करने से गुणांक के कुछ आव्यूहों के निर्धारकों के आधार पर सूत्र प्राप्त होते हैं और

विभेदीकरण और ीकरण

बार समारोह उपरोक्त के अनुसार घातश्रृंखला के रूप में दिया गया है, यह अभिसरण के क्षेत्र के आंतरिक (टोपोलॉजी) पर व्युत्पन्न है। प्रत्येक पद को अलग-अलग मानकर इसे आसानी से व्युत्पन्न और अभिन्न बनाया जा सकता है:

इन दोनों श्रृंखलाओं में मूल श्रृंखला के समान ही अभिसरण की त्रिज्या है।

विश्लेषणात्मक फलन

'आर' या 'सी' के कुछ खुले सेट यू पर परिभाषित फ़ंक्शन एफ को विश्लेषणात्मक फ़ंक्शन कहा जाता है यदि यह स्थानीय रूप से अभिसरण घातश्रृंखला द्वारा दिया जाता है। इसका मतलब यह है कि प्रत्येक a ∈ U में खुला पड़ोस (टोपोलॉजी) V ⊆ U है, जैसे कि केंद्र a के साथ घातश्रृंखला उपस्थित है जो प्रत्येक x ∈ V के लिए f(x) में परिवर्तित होती है।

अभिसरण की सकारात्मक त्रिज्या वाली प्रत्येक घातश्रृंखला अपने अभिसरण क्षेत्र के टोपोलॉजिकल इंटीरियर पर विश्लेषणात्मक है। सभी होलोमोर्फिक फ़ंक्शन जटिल-विश्लेषणात्मक हैं। विश्लेषणात्मक कार्यों के योग और उत्पाद विश्लेषणात्मक होते हैं, जैसे कि भागफल तब तक विश्लेषणात्मक होते हैं जब तक हर गैर-शून्य होता है।

यदि कोई फ़ंक्शन विश्लेषणात्मक है, तो यह असीम रूप से भिन्न होता है, लेकिन वास्तविक मामले में इसका विपरीत सामान्यतः सत्य नहीं होता है। विश्लेषणात्मक फ़ंक्शन के लिए, गुणांक an के रूप में गणना की जा सकती है

कहाँ c पर f के nवें अवकलज को दर्शाता है, और . इसका मतलब यह है कि प्रत्येक विश्लेषणात्मक फ़ंक्शन को स्थानीय रूप से उसकी टेलर श्रृंखला द्वारा दर्शाया जाता है।

विश्लेषणात्मक फ़ंक्शन का वैश्विक रूप निम्नलिखित अर्थों में उसके स्थानीय व्यवहार से पूरी तरह से निर्धारित होता है: यदि एफ और जी दो विश्लेषणात्मक फ़ंक्शन हैं जो ही कनेक्टिविटी ओपन सेट यू पर परिभाषित हैं, और यदि कोई तत्व उपस्थित है cU ऐसा है कि f(n)(c) = g(n)(c) सभी के लिए n ≥ 0, तब f(x) = g(x) सभी के लिए xU.

यदि अभिसरण आर की त्रिज्या के साथ घातश्रृंखला दी गई है, तो कोई श्रृंखला की विश्लेषणात्मक निरंतरता पर विचार कर सकता है, अर्थात विश्लेषणात्मक कार्य एफ जो कि बड़े सेटों पर परिभाषित होते हैं { x | |xc| < r} और इस सेट पर दी गई पावर श्रृंखला से सहमत हूं। संख्या r निम्नलिखित अर्थ में अधिकतम है: हमेशा जटिल संख्या उपस्थित होती है x साथ |xc| = r ऐसा कि श्रृंखला की किसी भी विश्लेषणात्मक निरंतरता को परिभाषित नहीं किया जा सकता है x.

विश्लेषणात्मक फ़ंक्शन के व्युत्क्रम फ़ंक्शन की घातश्रृंखला विस्तार को लैग्रेंज व्युत्क्रम प्रमेय का उपयोग करके निर्धारित किया जा सकता है।

सीमा के निकट व्यवहार

अभिसरण की सकारात्मक त्रिज्या के साथ घातश्रृंखला का योग अभिसरण डिस्क के आंतरिक भाग में प्रत्येक बिंदु पर विश्लेषणात्मक कार्य है। हालाँकि, उस डिस्क की सीमा पर बिंदुओं पर भिन्न व्यवहार हो सकता है। उदाहरण के लिए:

  1. विचलन जबकि योग विश्लेषणात्मक फ़ंक्शन तक विस्तारित होता है: अभिसरण की त्रिज्या के समान है और हर बिंदु पर अलग हो जाता है . फिर भी, योग है को छोड़कर, जो विमान के हर बिंदु पर विश्लेषणात्मक है .
  2. कुछ बिंदुओं पर अभिसरण दूसरों पर भिन्न: अभिसरण की त्रिज्या है . इसके लिए अभिसरण होता है , जबकि यह भिन्न होता है .
  3. सीमा के प्रत्येक बिंदु पर पूर्ण अभिसरण: अभिसरण की त्रिज्या है , जबकि यह हर बिंदु पर पूर्णतः और समान रूप से अभिसरित होता है हार्मोनिक श्रृंखला (गणित) के साथ लागू वीयरस्ट्रैस एम-टेस्ट के कारण#p-श्रृंखला|हाइपर-हार्मोनिक अभिसरण श्रृंखला .
  4. अभिसरण की डिस्क के बंद होने पर अभिसरण लेकिन निरंतर योग नहीं: वाकलॉ सिएरपिंस्की|सिएरपिंस्की ने उदाहरण दिया[3] अभिसरण की त्रिज्या के साथ घातश्रृंखला की , सभी बिंदुओं पर अभिसरण , लेकिन योग असीमित कार्य है और, विशेष रूप से, असंतत है। सीमा बिंदु पर तरफा निरंतरता के लिए पर्याप्त शर्त हाबिल के प्रमेय द्वारा दी गई है।

औपचारिक घातश्रृंखला

अमूर्त बीजगणित में, व्यक्ति वास्तविक और जटिल संख्याओं के क्षेत्र (गणित) तक सीमित हुए बिना और अभिसरण के बारे में बात किए बिना घातश्रृंखला के सार को पकड़ने का प्रयास करता है। यह औपचारिक घातश्रृंखला की अवधारणा की ओर ले जाता है, जो बीजगणितीय कॉम्बिनेटरिक्स में महान उपयोगिता की अवधारणा है।

कई चर में पावर श्रृंखला

बहुपरिवर्तनीय कलन के प्रयोजनों के लिए सिद्धांत का विस्तार आवश्यक है। यहाँ घातश्रृंखला को रूप की अनंत श्रृंखला के रूप में परिभाषित किया गया है

कहाँ j = (j1, …, jn) प्राकृतिक संख्याओं, गुणांकों का सदिश है a(j1, …, jn) सामान्यतः वास्तविक या सम्मिश्र संख्याएँ और केंद्र होते हैं c = (c1, …, cn) और तर्क x = (x1, …, xn) सामान्यतः वास्तविक या जटिल वेक्टर होते हैं। प्रतीक गुणन#कैपिटल पाई नोटेशन है, जो गुणन को दर्शाता है। इसे अधिक सुविधाजनक बहु सूचकांक नोटेशन में लिखा जा सकता है
कहाँ प्राकृतिक संख्याओं का समुच्चय है, इत्यादि प्राकृतिक संख्याओं के क्रमित n-टुपल्स का समुच्चय है।

ऐसी श्रृंखला का सिद्धांत ल-चर श्रृंखला की तुलना में अधिक पेचीदा है, जिसमें अभिसरण के अधिक जटिल क्षेत्र हैं। उदाहरण के लिए, पावर श्रृंखला सेट में बिल्कुल अभिसरण है दो अतिपरवलय के बीच. (यह लॉग-उत्तल सेट का उदाहरण है, इस अर्थ में कि बिंदुओं का सेट , कहाँ उपरोक्त क्षेत्र में स्थित, उत्तल समुच्चय है। अधिक सामान्यतः, कोई यह दिखा सकता है कि जब c=0, पूर्ण अभिसरण के क्षेत्र का आंतरिक भाग हमेशा इस अर्थ में लॉग-उत्तल सेट होता है।) दूसरी ओर, अभिसरण के इस क्षेत्र के आंतरिक भाग में कोई अंतर और ीकृत हो सकता है श्रृंखला चिह्न के अंतर्गत, ठीक वैसे ही जैसे कोई सामान्य घातश्रृंखला के साथ कर सकता है।[4]

घातश्रृंखला का क्रम

होने देना α पावर श्रृंखला के लिए बहु-सूचकांक बनें f(x1, x2, …, xn). घात श्रेणी f के क्रम को न्यूनतम मान के रूप में परिभाषित किया गया है ऐसा है कि हैα ≠ 0 के साथ , या यदि f ≡ 0. विशेष रूप से, ल चर x में घात श्रृंखला f(x) के लिए, f का क्रम गैर-शून्य गुणांक के साथ x की सबसे छोटी घातहै। यह परिभाषा आसानी से लॉरेंट श्रृंखला तक फैली हुई है।

टिप्पणियाँ

  1. Howard Levi (1967). बहुपद, घात श्रृंखला, और कैलकुलस. Van Nostrand. p. 24.
  2. Erwin Kreyszig, Advanced Engineering Mathematics, 8th ed, page 747
  3. Wacław Sierpiński (1916). "Sur une série potentielle qui, étant convergente en tout point de son cercle de convergence, représente sur ce cercle une fonction discontinue. (French)". Rendiconti del Circolo Matematico di Palermo. Palermo Rend. 41: 187–190. doi:10.1007/BF03018294. JFM 46.1466.03. S2CID 121218640.
  4. Beckenbach, E. F. (1948). "उत्तल कार्य". Bulletin of the American Mathematical Society. 54 (5): 439–460. doi:10.1090/S0002-9904-1948-08994-7.

संदर्भ

बाहरी संबंध