भाज्य क्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Expectation or average of the falling factorial of a random variable}}
{{Short description|Expectation or average of the falling factorial of a random variable}}
संभाव्यता सिद्धांत में, फैक्टोरियल पल गणितीय मात्रा है जिसे यादृच्छिक चर के गिरते फैक्टोरियल के [[अपेक्षित मूल्य]] या औसत के रूप में परिभाषित किया गया है। गैर-नकारात्मक [[पूर्णांक]]-मूल्यवान यादृच्छिक चर का अध्ययन करने के [[गिरता हुआ भाज्य]] क्षण उपयोगी होते हैं,<ref name="daleyPPI2003">D. J. Daley and D. Vere-Jones. ''An introduction to the theory of point processes. Vol. I''. Probability and its Applications (New York). Springer, New York, second edition, 2003</ref> और असतत यादृच्छिक चर के क्षणों को प्राप्त करने के लिए संभाव्यता-उत्पादक कार्यों के उपयोग में उत्पन्न होते हैं।
संभाव्यता सिद्धांत में, '''भाज्य क्षण''' गणितीय मात्रा है जिसे यादृच्छिक चर के गिरते भाज्य के [[अपेक्षित मूल्य]] या औसत के रूप में परिभाषित किया गया है। गैर-नकारात्मक [[पूर्णांक]]-मूल्यवान यादृच्छिक चर का अध्ययन करने के [[गिरता हुआ भाज्य|भाज्य]] क्षण उपयोगी होते हैं,<ref name="daleyPPI2003">D. J. Daley and D. Vere-Jones. ''An introduction to the theory of point processes. Vol. I''. Probability and its Applications (New York). Springer, New York, second edition, 2003</ref> और असतत यादृच्छिक चर के क्षणों को प्राप्त करने के लिए संभाव्यता-उत्पादक कार्यों के उपयोग में उत्पन्न होते हैं।


फैक्टोरियल क्षण कॉम्बिनेटरिक्स के गणितीय क्षेत्र में विश्लेषणात्मक उपकरण के रूप में कार्य करते हैं, जो असतत गणितीय संरचनाओं का अध्ययन है।<ref>{{cite book|last=Riordan|first=John|authorlink=John Riordan (mathematician)|title=संयुक्त विश्लेषण का परिचय|year=1958|publisher=Dover}}</ref>
भाज्य क्षण कॉम्बिनेटरिक्स के गणितीय क्षेत्र में विश्लेषणात्मक उपकरण के रूप में कार्य करते हैं, जो असतत गणितीय संरचनाओं का अध्ययन है।<ref>{{cite book|last=Riordan|first=John|authorlink=John Riordan (mathematician)|title=संयुक्त विश्लेषण का परिचय|year=1958|publisher=Dover}}</ref>




==परिभाषा==
==परिभाषा                                                                                                                                                                                                                               ==
एक प्राकृतिक संख्या के लिए {{math|''r''}}, {{math|''r''}}-वास्तविक या सम्मिश्र संख्याओं पर संभाव्यता वितरण का वाँ तथ्यात्मक क्षण, या, दूसरे शब्दों में, यादृच्छिक चर {{math|''X''}} उस संभाव्यता वितरण के साथ, है<ref>{{cite book|last=Riordan|first=John|authorlink=John Riordan (mathematician)|title=संयुक्त विश्लेषण का परिचय|year=1958|publisher=Dover|pages=30}}</ref>
एक प्राकृतिक संख्या के लिए {{math|''r''}}, -वास्तविक या सम्मिश्र संख्याओं पर संभाव्यता वितरण का {{math|''r''}}-वाँ तथ्यात्मक क्षण, या, दूसरे शब्दों में, यादृच्छिक चर {{math|''X''}} उस संभाव्यता वितरण के साथ है <ref>{{cite book|last=Riordan|first=John|authorlink=John Riordan (mathematician)|title=संयुक्त विश्लेषण का परिचय|year=1958|publisher=Dover|pages=30}}</ref>
:<math>\operatorname{E}\bigl[(X)_r\bigr] = \operatorname{E}\bigl[ X(X-1)(X-2)\cdots(X-r+1)\bigr],</math>
:<math>\operatorname{E}\bigl[(X)_r\bigr] = \operatorname{E}\bigl[ X(X-1)(X-2)\cdots(X-r+1)\bigr],</math>
जहां {{math|E}} अपेक्षित मूल्य है (ऑपरेटर (गणित)#संभावना सिद्धांत) और
जहां {{math|E}} अपेक्षित संचालक है और


:<math>(x)_r := \underbrace{x(x-1)(x-2)\cdots(x-r+1)}_{r \text{ factors}} \equiv \frac{x!}{(x-r)!}</math>
:<math>(x)_r := \underbrace{x(x-1)(x-2)\cdots(x-r+1)}_{r \text{ factors}} \equiv \frac{x!}{(x-r)!}</math>
गिरता हुआ भाज्य है, जो नाम को जन्म देता है, यद्यपि संकेतन {{math|(''x'')<sub>''r''</sub>}} गणितीय क्षेत्र के आधार पर भिन्न होता है। {{efn| The [[Pochhammer symbol]] {{math|(''x'')<sub>''r''</sub>}} is used especially in the theory of [[special function]]s, to denote the [[falling factorial]] {{math|''x''(''x'' - 1)(''x'' - 2) ... (''x'' - ''r'' + 1)}};.<ref name="NIST:DLMF">{{cite book| title=NIST Digital Library of Mathematical Functions| url=http://dlmf.nist.gov/| accessdate=9 November 2013}}</ref> whereas the present notation is used more often in [[combinatorics]].}} बेशक, परिभाषा के लिए आवश्यक है कि अपेक्षा सार्थक हो, जो कि मामला है {{math|(''X'')<sub>''r''</sub> ≥ 0}} या {{math|E<nowiki>[|</nowiki>(''X'')<sub>''r''</sub><nowiki>|]</nowiki> < ∞}}.
स्खलन भाज्य है, जो नाम को जन्म देता है, यद्यपि संकेतन {{math|(''x'')<sub>''r''</sub>}} गणितीय क्षेत्र के आधार पर भिन्न होता है। {{efn| The [[Pochhammer symbol]] {{math|(''x'')<sub>''r''</sub>}} is used especially in the theory of [[special function]]s, to denote the [[falling factorial]] {{math|''x''(''x'' - 1)(''x'' - 2) ... (''x'' - ''r'' + 1)}};.<ref name="NIST:DLMF">{{cite book| title=NIST Digital Library of Mathematical Functions| url=http://dlmf.nist.gov/| accessdate=9 November 2013}}</ref> whereas the present notation is used more often in [[combinatorics]].}} परिभाषा के लिए आवश्यक है कि अपेक्षा सार्थक हो, जो कि {{math|(''X'')<sub>''r''</sub> ≥ 0}} या {{math|E<nowiki>[|</nowiki>(''X'')<sub>''r''</sub><nowiki>|]</nowiki> < ∞}} स्थिति है .


अगर {{math|X}} में सफलताओं की संख्या है {{math|n}} परीक्षण, और {{math|p<sub>r</sub>}} संभावना है कि कोई भी {{math|r}} की {{math|n}} तो फिर सभी परीक्षण सफल होते हैं<ref>P.V.Krishna Iyer. "A Theorem on Factorial Moments and its Applications". Annals of Mathematical Statistics Vol. 29 (1958). Pages 254-261.</ref>
यदि {{math|X}}, {{math|n}} परीक्षणों में सफलताओं की संख्या है और {{math|p<sub>r</sub>}} संभावना है कि {{math|n}} परीक्षणों में से कोई भी {{math|r}} सभी सफल हैं, <ref>P.V.Krishna Iyer. "A Theorem on Factorial Moments and its Applications". Annals of Mathematical Statistics Vol. 29 (1958). Pages 254-261.</ref>
:<math>\operatorname{E}\bigl[(X)_r\bigr] = n(n-1)(n-2)\cdots(n-r+1)p_r</math>
:<math>\operatorname{E}\bigl[(X)_r\bigr] = n(n-1)(n-2)\cdots(n-r+1)p_r</math>


 
==उदाहरण                                                                                                                                                                                                                                   ==
==उदाहरण==


===पॉइसन वितरण===
===पॉइसन वितरण===
यदि यादृच्छिक चर {{math|''X''}} में पैरामीटर λ के साथ पॉइसन वितरण है, फिर के फैक्टोरियल क्षण {{math|''X''}} हैं
यदि यादृच्छिक चर {{math|''X''}} में मापदंड λ के साथ पॉइसन वितरण है, फिर के भाज्य क्षण {{math|''X''}} हैं


:<math>\operatorname{E}\bigl[(X)_r\bigr] =\lambda^r,</math>
:<math>\operatorname{E}\bigl[(X)_r\bigr] =\lambda^r,</math>
जो पॉइसन वितरण#उच्च क्षणों की तुलना में सरल रूप में हैं, जिसमें दूसरे प्रकार की स्टर्लिंग संख्याएं शामिल हैं।
जो पॉइसन वितरण उच्च क्षणों की तुलना में सरल रूप में हैं, जिसमें दूसरे प्रकार की स्टर्लिंग संख्याएं सम्मिलित हैं।


===द्विपद बंटन===
===द्विपद बंटन===
यदि यादृच्छिक चर {{math|''X''}}सफलता की संभावना के साथ [[द्विपद वितरण]] है {{math|''p'' ∈ }}{{closed-closed|0,1}} और परीक्षणों की संख्या {{math|''n''}}, फिर के तथ्यात्मक क्षण {{math|''X''}} हैं<ref name="potts1953note">{{cite journal| author=Potts, RB| title=मानक वितरण के तथ्यात्मक क्षणों पर ध्यान दें| journal=Australian Journal of Physics| year=1953| volume=6| number=4| pages=498–499| publisher=CSIRO| doi=10.1071/ph530498| bibcode=1953AuJPh...6..498P| doi-access=free}}<!--| accessdate=13 November 2013--></ref>
यदि यादृच्छिक चर {{math|''X''}} सफलता की संभावना के साथ [[द्विपद वितरण]] है {{math|''p'' ∈ }}{{closed-closed|0,1}} और परीक्षणों की संख्या {{math|''n''}}, फिर के तथ्यात्मक क्षण {{math|''X''}} हैं<ref name="potts1953note">{{cite journal| author=Potts, RB| title=मानक वितरण के तथ्यात्मक क्षणों पर ध्यान दें| journal=Australian Journal of Physics| year=1953| volume=6| number=4| pages=498–499| publisher=CSIRO| doi=10.1071/ph530498| bibcode=1953AuJPh...6..498P| doi-access=free}}<!--| accessdate=13 November 2013--></ref>
:<math>\operatorname{E}\bigl[(X)_r\bigr] = \binom{n}{r} p^r r! = (n)_r p^r,</math>
:<math>\operatorname{E}\bigl[(X)_r\bigr] = \binom{n}{r} p^r r! = (n)_r p^r,</math>
जहां सम्मेलन द्वारा, <math>\textstyle{\binom{n}{r}} </math> और <math>(n)_r</math> यदि r > n हो तो शून्य समझा जाता है।
जहां सम्मेलन द्वारा, <math>\textstyle{\binom{n}{r}} </math> और <math>(n)_r</math> यदि r > n हो तो शून्य समझा जाता है।


===हाइपरज्यामितीय वितरण===
===हाइपरज्यामितीय वितरण===
यदि यादृच्छिक चर {{math|''X''}} में जनसंख्या आकार के साथ [[हाइपरज्यामितीय वितरण]] है {{math|''N''}}, सफलता की स्थिति की संख्या {{math|''K'' ∈ {0,...,''N''}}} जनसंख्या में, और खींचता है {{math|''n'' ∈ {0,...,''N''}}}, फिर के तथ्यात्मक क्षण {{math|''X''}} हैं <ref name="potts1953note"/>
यदि यादृच्छिक चर {{math|''X''}} में जनसंख्या आकार के साथ [[हाइपरज्यामितीय वितरण]] {{math|''N''}} है , सफलता की स्थिति की संख्या {{math|''K'' ∈ {0,...,''N''}}} जनसंख्या में, और खींचता {{math|''n'' ∈ {0,...,''N''}} है , फिर के तथ्यात्मक क्षण {{math|''X''}} हैं <ref name="potts1953note"/>


:<math>\operatorname{E}\bigl[(X)_r\bigr] = \frac{\binom{K}{r}\binom{n}{r}r!}{\binom{N}{r}} = \frac{(K)_r (n)_r}{(N)_r}. </math>
:<math>\operatorname{E}\bigl[(X)_r\bigr] = \frac{\binom{K}{r}\binom{n}{r}r!}{\binom{N}{r}} = \frac{(K)_r (n)_r}{(N)_r}. </math>
Line 37: Line 36:


===बीटा-द्विपद बंटन===
===बीटा-द्विपद बंटन===
यदि यादृच्छिक चर {{math|''X''}} में मापदंडों के साथ [[बीटा-द्विपद वितरण]] है {{math|''α'' > 0}}, {{math|''β'' > 0}}, और परीक्षणों की संख्या {{math|''n''}}, फिर के तथ्यात्मक क्षण {{math|''X''}} हैं
यदि यादृच्छिक चर {{math|''X''}} में मापदंडों के साथ [[बीटा-द्विपद वितरण]] {{math|''α'' > 0}}, {{math|''β'' > 0}} है, और परीक्षणों की संख्या {{math|''n''}}, फिर के तथ्यात्मक क्षण {{math|''X''}} हैं


:<math>\operatorname{E}\bigl[(X)_r\bigr] = \binom{n}{r}\frac{B(\alpha+r,\beta)r!}{B(\alpha,\beta)} =
:<math>\operatorname{E}\bigl[(X)_r\bigr] = \binom{n}{r}\frac{B(\alpha+r,\beta)r!}{B(\alpha,\beta)} =
Line 47: Line 46:


:<math>\operatorname{E}[X^r] = \sum_{j=0}^r \left\{ {r \atop j} \right\} \operatorname{E}[(X)_j], </math>
:<math>\operatorname{E}[X^r] = \sum_{j=0}^r \left\{ {r \atop j} \right\} \operatorname{E}[(X)_j], </math>
जहां घुंघराले ब्रेसिज़ दूसरी तरह की स्टर्लिंग संख्याओं को दर्शाते हैं।
जहां तरंगित ब्रेसिज़ दूसरी तरह की स्टर्लिंग संख्याओं को दर्शाते हैं।


==यह भी देखें==
==यह भी देखें==
Line 53: Line 52:
* [[क्षण (गणित)]]
* [[क्षण (गणित)]]
* संचयक
* संचयक
* [[फैक्टोरियल मोमेंट जनरेटिंग फ़ंक्शन]]
* [[फैक्टोरियल मोमेंट जनरेटिंग फ़ंक्शन|भाज्य मोमेंट जनरेटिंग फलन]]


==टिप्पणियाँ==
==टिप्पणियाँ==

Revision as of 10:41, 8 July 2023

संभाव्यता सिद्धांत में, भाज्य क्षण गणितीय मात्रा है जिसे यादृच्छिक चर के गिरते भाज्य के अपेक्षित मूल्य या औसत के रूप में परिभाषित किया गया है। गैर-नकारात्मक पूर्णांक-मूल्यवान यादृच्छिक चर का अध्ययन करने के भाज्य क्षण उपयोगी होते हैं,[1] और असतत यादृच्छिक चर के क्षणों को प्राप्त करने के लिए संभाव्यता-उत्पादक कार्यों के उपयोग में उत्पन्न होते हैं।

भाज्य क्षण कॉम्बिनेटरिक्स के गणितीय क्षेत्र में विश्लेषणात्मक उपकरण के रूप में कार्य करते हैं, जो असतत गणितीय संरचनाओं का अध्ययन है।[2]


परिभाषा

एक प्राकृतिक संख्या के लिए r, -वास्तविक या सम्मिश्र संख्याओं पर संभाव्यता वितरण का r-वाँ तथ्यात्मक क्षण, या, दूसरे शब्दों में, यादृच्छिक चर X उस संभाव्यता वितरण के साथ है [3]

जहां E अपेक्षित संचालक है और

स्खलन भाज्य है, जो नाम को जन्म देता है, यद्यपि संकेतन (x)r गणितीय क्षेत्र के आधार पर भिन्न होता है। [lower-alpha 1] परिभाषा के लिए आवश्यक है कि अपेक्षा सार्थक हो, जो कि (X)r ≥ 0 या E[|(X)r|] < ∞ स्थिति है .

यदि X, n परीक्षणों में सफलताओं की संख्या है और pr संभावना है कि n परीक्षणों में से कोई भी r सभी सफल हैं, [5]

उदाहरण

पॉइसन वितरण

यदि यादृच्छिक चर X में मापदंड λ के साथ पॉइसन वितरण है, फिर के भाज्य क्षण X हैं

जो पॉइसन वितरण उच्च क्षणों की तुलना में सरल रूप में हैं, जिसमें दूसरे प्रकार की स्टर्लिंग संख्याएं सम्मिलित हैं।

द्विपद बंटन

यदि यादृच्छिक चर X सफलता की संभावना के साथ द्विपद वितरण है p[0,1] और परीक्षणों की संख्या n, फिर के तथ्यात्मक क्षण X हैं[6]

जहां सम्मेलन द्वारा, और यदि r > n हो तो शून्य समझा जाता है।

हाइपरज्यामितीय वितरण

यदि यादृच्छिक चर X में जनसंख्या आकार के साथ हाइपरज्यामितीय वितरण N है , सफलता की स्थिति की संख्या K ∈ {0,...,N} जनसंख्या में, और खींचता n ∈ {0,...,N है , फिर के तथ्यात्मक क्षण X हैं [6]


बीटा-द्विपद बंटन

यदि यादृच्छिक चर X में मापदंडों के साथ बीटा-द्विपद वितरण α > 0, β > 0 है, और परीक्षणों की संख्या n, फिर के तथ्यात्मक क्षण X हैं


क्षणों की गणना

एक यादृच्छिक चर X का वां कच्चा क्षण सूत्र द्वारा इसके भाज्य क्षणों के संदर्भ में व्यक्त किया जा सकता है

जहां तरंगित ब्रेसिज़ दूसरी तरह की स्टर्लिंग संख्याओं को दर्शाते हैं।

यह भी देखें

टिप्पणियाँ

  1. The Pochhammer symbol (x)r is used especially in the theory of special functions, to denote the falling factorial x(x - 1)(x - 2) ... (x - r + 1);.[4] whereas the present notation is used more often in combinatorics.


संदर्भ

  1. D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I. Probability and its Applications (New York). Springer, New York, second edition, 2003
  2. Riordan, John (1958). संयुक्त विश्लेषण का परिचय. Dover.
  3. Riordan, John (1958). संयुक्त विश्लेषण का परिचय. Dover. p. 30.
  4. NIST Digital Library of Mathematical Functions. Retrieved 9 November 2013.
  5. P.V.Krishna Iyer. "A Theorem on Factorial Moments and its Applications". Annals of Mathematical Statistics Vol. 29 (1958). Pages 254-261.
  6. 6.0 6.1 Potts, RB (1953). "मानक वितरण के तथ्यात्मक क्षणों पर ध्यान दें". Australian Journal of Physics. CSIRO. 6 (4): 498–499. Bibcode:1953AuJPh...6..498P. doi:10.1071/ph530498.