रद्दीकरण गुण: Difference between revisions

From Vigyanwiki
No edit summary
Line 56: Line 56:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/07/2023]]
[[Category:Created On 01/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 13:23, 10 July 2023

गणित में, रद्दीकरण की धारणा व्युत्क्रमणीय की धारणा का सामान्यीकरण है।

मैग्मा (बीजगणित) में एक तत्व (M, ∗)यदि एम में सभी बी और सी के लिए के पास बाईं रद्दीकरण संपत्ति है (या बाईं-रद्द है) ab = ac सदैव इसका तात्पर्य यही है b = c.

मैग्मा में एक तत्व (M, ∗) यदि एम में सभी बी और सी के लिए के पास सही रद्दीकरण संपत्ति है (या सही-रद्दीकरण है) ba = ca सदैव इसका तात्पर्य यही है b = c.

मैग्मा में एक तत्व (M, ∗) में दो तरफा रद्दीकरण गुण है (या रद्दीकरणीय है) यदि यह बाएँ और दाएँ दोनों तरह से रद्दीकरणात्मक है।

एक मैग्मा (M, ∗) के पास बाईं रद्दीकरण संपत्ति है (या बाईं ओर रद्द करने योग्य है) यदि मैग्मा में सभी ए बाईं रद्द करने योग्य हैं, और इसी तरह की परिभाषाएं दाएं रद्द करने योग्य या दो तरफा रद्द करने योग्य गुणों के लिए लागू होती हैं।

एक बाएँ-उलटा तत्व बाएँ-रद्द करने योग्य है, और समान रूप से दाएँ और दो-तरफा के लिए है।

उदाहरण के लिए, प्रत्येक अर्धसमूह, और इस प्रकार प्रत्येक समूह (गणित), रद्दीकरणात्मक है।

व्याख्या

कहने का तात्पर्य यह है कि मैग्मा में एक तत्व होता है (M, ∗) वाम-रद्द है, कहने का तात्पर्य यह है कि कार्य g : xax इंजेक्शन है.[1] कार्य g इंजेक्टिव है, इसका तात्पर्य यह है कि a * x = b के रूप में कुछ समानता दी गई है, जहां एकमात्र अज्ञात x है, समानता को संतुष्ट करने वाला x का केवल एक संभावित मान है। अधिक सटीक रूप से, हम कुछ कार्य f, g के व्युत्क्रम को परिभाषित करने में सक्षम हैं, जैसे कि सभी x के लिए f(g(x)) = f(ax) = x. दूसरे तरीके से कहें तो, M में सभी x और y के लिए, यदि a * x = a * y, तो x = y।[2]


रद्दीकरण मोनोइड और अर्धसमूह के उदाहरण

धनात्मक (समान रूप से गैर-ऋणात्मक) पूर्णांक जोड़ के अंतर्गत एक रद्दात्मक अर्धसमूह बनाते हैं। गैर-नकारात्मक पूर्णांक जोड़ के तहत एक रद्दीकरण मोनॉइड बनाते हैं।

वास्तव में, कोई भी मुक्त अर्धसमूह या मोनॉइड रद्दीकरण कानून का पालन करता है, और सामान्यतः, किसी समूह में एम्बेड करने वाला कोई भी अर्धसमूह या मोनॉइड रद्दीकरण कानून का पालन करेगा।

एक अलग तरीके से, (एक उपसमूह) एक रिंग (गणित) के तत्वों का गुणक अर्धसमूह जो शून्य विभाजक नहीं है (जो कि सभी गैर-शून्य तत्वों का सेट है यदि प्रश्न में रिंग एक कार्यक्षेत्र (रिंग सिद्धांत) है, जैसे पूर्णांक) में रद्दीकरण गुण है। ध्यान दें कि यह तब भी वैध रहता है, भले ही प्रश्नाधीन वलय गैर-अनुक्रमणीय और/या गैर-इकाईदार हो।

गैर-रद्द करने योग्य बीजगणितीय संरचनाएँ

यद्यपि रद्दीकरण कानून वास्तविक संख्या और जटिल संख्याओं के जोड़, घटाव, गुणा और विभाजन के लिए लागू होता है (0 (संख्या) से गुणा और किसी अन्य संख्या से शून्य के विभाजन के एकल अपवाद के साथ), कई बीजगणितीय संरचनाएं हैं. जहां रद्दीकरण होता है कानून वैध नहीं है.

दो वैक्टरों का क्रॉस उत्पाद रद्दीकरण कानून का पालन नहीं करता. यदि a × b = a × c, तो यह उसका पालन नहीं करता है b = c भले ही a0.

आव्यूह गुणन भी आवश्यक रूप से रद्दीकरण कानून का पालन नहीं करता है। यदि AB = AC और A ≠ 0, तो किसी को यह दिखाना होगा कि आव्यूह ए उलटा है (अर्थात है det(A) ≠ 0) इससे पहले कि कोई यह निष्कर्ष निकाल सके B = C. यदि det(A) = 0, तो B, C के बराबर नहीं हो सकता, क्योंकि आव्यूह (गणित) समीकरण AX = B के पास गैर-उलटा आव्यूह ए के लिए कोई अद्वितीय समाधान नहीं होगा।

यह भी ध्यान दें कि यदि AB = CA और A ≠ 0 और आव्यूह ए उलटा है (अर्थात है det(A) ≠ 0), यह आवश्यक रूप से सत्य नहीं है B = C. रद्दीकरण केवल के लिए कार्य करता है AB = AC और BA = CA (बशर्ते कि आव्यूह ए उलटा हो) और इसके लिए नहीं AB = CA और BA = AC.

यह भी देखें

संदर्भ

  1. Warner, Seth (1965). आधुनिक बीजगणित खंड I. Englewood Cliffs, NJ: Prentice-Hall, Inc. p. 50.
  2. Warner, Seth (1965). आधुनिक बीजगणित खंड I. Englewood Cliffs, NJ: Prentice-Hall, Inc. p. 48.