एंडोथर्मिक प्रक्रिया: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
विभिन्न प्रक्रियाओं (राज्य में परिवर्तन, रासायनिक प्रतिक्रियाओं) के अंतर्गत बॉन्ड टूटने और गठन के कारण, सामान्यतः ऊर्जा में परिवर्तन होता है। यदि गठन बॉन्ड की ऊर्जा, ब्रेकिंग बॉन्ड की ऊर्जा से अधिक है, तो ऊर्जा प्रारम्भ की जाती है। यह एक्सोथर्मिक प्रतिक्रिया के रूप में जाना जाता है। चूँकि, यदि प्रारम्भ की जा रही ऊर्जा की तुलना में बंधनों को तोड़ने के लिए अधिक ऊर्जा की आवश्यकता होती है, तो ऊर्जा को उठाया जाता है। इसलिए, यह एंडोथर्मिक प्रतिक्रिया होती है।<ref>{{Cite web|title=एक्सोथर्मिक और एंडोथर्मिक प्रतिक्रियाएं {{!}} उच्च विद्यालय रसायन विज्ञान के लिए ऊर्जा नींव|url=https://highschoolenergy.acs.org/content/hsef/en/how-can-energy-change/exothermic-endothermic.html#:~:text=Chemical%20reactions%20that%20release%20energy,the%20bonds%20in%20the%20reactants.|access-date=2021-04-11|website=highschoolenergy.acs.org}}</ref> | विभिन्न प्रक्रियाओं (राज्य में परिवर्तन, रासायनिक प्रतिक्रियाओं) के अंतर्गत बॉन्ड टूटने और गठन के कारण, सामान्यतः ऊर्जा में परिवर्तन होता है। यदि गठन बॉन्ड की ऊर्जा, ब्रेकिंग बॉन्ड की ऊर्जा से अधिक है, तो ऊर्जा प्रारम्भ की जाती है। यह एक्सोथर्मिक प्रतिक्रिया के रूप में जाना जाता है। चूँकि, यदि प्रारम्भ की जा रही ऊर्जा की तुलना में बंधनों को तोड़ने के लिए अधिक ऊर्जा की आवश्यकता होती है, तो ऊर्जा को उठाया जाता है। इसलिए, यह एंडोथर्मिक प्रतिक्रिया होती है।<ref>{{Cite web|title=एक्सोथर्मिक और एंडोथर्मिक प्रतिक्रियाएं {{!}} उच्च विद्यालय रसायन विज्ञान के लिए ऊर्जा नींव|url=https://highschoolenergy.acs.org/content/hsef/en/how-can-energy-change/exothermic-endothermic.html#:~:text=Chemical%20reactions%20that%20release%20energy,the%20bonds%20in%20the%20reactants.|access-date=2021-04-11|website=highschoolenergy.acs.org}}</ref> | ||
== विवरण == | == विवरण == | ||
कोई प्रक्रिया स्वतःस्फूर्त रूप से घटित हो सकती है या नहीं यह न केवल एन्थैल्पी परिवर्तन पर बल्कि एन्ट्रापी परिवर्तन ({{math|∆''S''}}) और निरपेक्ष तापमान {{mvar|T}} पर भी निर्भर करता है। यदि प्रक्रिया निश्चित तापमान पर सहज प्रक्रिया होती है, तो उत्पादों में कम थर्मोडायनामिक मुक्त ऊर्जा होती है I {{math|1=''G'' = ''H'' – ''TS''}} अभिकारकों की तुलना में (एक्सगेरोनिक प्रक्रिया),<ref name="Oxtoby8th"/> भले ही उत्पादों की थैलीपी अधिक होती हो। इस प्रकार, एंडोथर्मिक प्रक्रिया को सामान्यतः एन्ट्रापी उत्पादन ({{math|∆''S'' > 0}}) की आवश्यकता होती है, जो एन्थैल्पी में प्रतिकूल वृद्धि को समाप्त कर देता है जिससे अभी भी {{math|∆''G'' < 0}} हो। जबकि एंडोथर्मिक चरण उच्च एन्ट्रापी के अधिक अव्यवस्थित राज्यों में संक्रमण करता है,उदाहरण के लिए पिघलना और वाष्पीकरण, सामान्य होता हैं, मध्यम तापमान पर सहज रासायनिक प्रक्रियाएं | कोई प्रक्रिया स्वतःस्फूर्त रूप से घटित हो सकती है या नहीं यह न केवल एन्थैल्पी परिवर्तन पर बल्कि एन्ट्रापी परिवर्तन ({{math|∆''S''}}) और निरपेक्ष तापमान {{mvar|T}} पर भी निर्भर करता है। यदि प्रक्रिया निश्चित तापमान पर सहज प्रक्रिया होती है, तो उत्पादों में कम थर्मोडायनामिक मुक्त ऊर्जा होती है I {{math|1=''G'' = ''H'' – ''TS''}} अभिकारकों की तुलना में (एक्सगेरोनिक प्रक्रिया),<ref name="Oxtoby8th"/> भले ही उत्पादों की थैलीपी अधिक होती हो। इस प्रकार, एंडोथर्मिक प्रक्रिया को सामान्यतः एन्ट्रापी उत्पादन ({{math|∆''S'' > 0}}) की आवश्यकता होती है, जो एन्थैल्पी में प्रतिकूल वृद्धि को समाप्त कर देता है जिससे अभी भी {{math|∆''G'' < 0}} हो। जबकि एंडोथर्मिक चरण उच्च एन्ट्रापी के अधिक अव्यवस्थित राज्यों में संक्रमण करता है,उदाहरण के लिए पिघलना और वाष्पीकरण, सामान्य होता हैं, मध्यम तापमान पर सहज रासायनिक प्रक्रियाएं संभवतः ही कभी एंडोथर्मिक होती हैं। काल्पनिक प्रबल एंडोथर्मिक प्रक्रिया में एन्थैल्पी वृद्धि {{math| ∆''H'' ≫ 0}} परिणामस्वरूप सामान्यतः {{math|1=∆''G'' = ∆''H'' – ''T''∆''S'' > 0}} होता है, जिसका अर्थ है कि प्रक्रिया नहीं होगी (जब तक कि विद्युत या फोटॉन ऊर्जा द्वारा संचालित न हो)। एंडोथर्मिक और एक्सगेरोनिक प्रक्रिया का उदाहरण इस प्रकार है | ||
:<chem>C6H12O6 + 6 H2O -> 12 H2 + 6 CO2</chem> | :<chem>C6H12O6 + 6 H2O -> 12 H2 + 6 CO2</chem> | ||
Line 21: | Line 21: | ||
* हाइड्रोलिसिस | * हाइड्रोलिसिस | ||
* तारकीय कोर में निकल की तुलना में भारी तत्वों का न्यूक्लियोसिंथेसिस | * तारकीय कोर में निकल की तुलना में भारी तत्वों का न्यूक्लियोसिंथेसिस | ||
* उच्च-ऊर्जा न्यूट्रॉन | * उच्च-ऊर्जा न्यूट्रॉन एंडोथर्मिक प्रक्रिया में लिथियम -7 से ट्रिटियम का उत्पादन कर सकते हैं, 2.466 मेव का उपभोग कर सकते हैं। यह तब पता चला जब 1954 के कैसल ब्रावो उच्च उपज परमाणु परीक्षण के कारण ने अप्रत्याशित रूप से उच्च उपज का उत्पादन किया हैं।<ref name="ieer">{{Cite web|url=http://www.ieer.org/reports/tritium.html#(11)|title=ट्रिटियम: ट्रिटियम का उत्पादन करने के लिए ऊर्जा विभाग के फैसले के पर्यावरण, स्वास्थ्य, बजटीय और रणनीतिक प्रभाव|last=Austin|first=Patrick|date=January 1996|publisher=[[Institute for Energy and Environmental Research]]|access-date=2010-09-15}}</ref> | ||
* सुपरनोवा में लोहे की तुलना में भारी तत्वों का परमाणु संलयन <ref>Qian, Y.-Z.; Vogel, P.; Wasserburg, G. J. (1998). "Diverse Supernova Sources for the r-Process". Astrophysical Journal 494 (1): 285–296. {{arxiv|astro-ph/9706120}}. {{Bibcode|1998ApJ...494..285Q}}. {{doi|10.1086/305198}}.</ref> | * सुपरनोवा में लोहे की तुलना में भारी तत्वों का परमाणु संलयन<ref>Qian, Y.-Z.; Vogel, P.; Wasserburg, G. J. (1998). "Diverse Supernova Sources for the r-Process". Astrophysical Journal 494 (1): 285–296. {{arxiv|astro-ph/9706120}}. {{Bibcode|1998ApJ...494..285Q}}. {{doi|10.1086/305198}}.</ref> | ||
*बेरियम हाइड्रॉक्साइड और अमोनियम क्लोराइड को | *बेरियम हाइड्रॉक्साइड और अमोनियम क्लोराइड को साथ में भंग करना | ||
*साइट्रिक एसिड और बेकिंग सोडा को | *साइट्रिक एसिड और बेकिंग सोडा को साथ में भंग करना<ref name="pbs">{{Cite web|url=https://www.pbs.org/wgbh/nova/teachers/activities/3213_einstein_13.html|title=द्रव्यमान के साथ खिलवाड़|date=2005|publisher=[[WGBH Educational Foundation|WGBH]]|access-date=2020-05-28}}</ref> | ||
== एंडोथर्मिक और एंडोथर्म के | == एंडोथर्मिक और एंडोथर्म के मध्य अंतर == | ||
शब्द एंडोथर्मिक और एंडोथर्म दोनों प्राचीन ग्रीक δν andν एंडोन से | शब्द एंडोथर्मिक और एंडोथर्म दोनों प्राचीन ग्रीक δν andν एंडोन से और ηρμ, थर्मो ऊष्मा से व्युत्पन्न हुए हैं, लेकिन संदर्भ के आधार पर, उनके बहुत अलग अर्थ हो सकते हैं। | ||
भौतिकी में, थर्मोडायनामिक्स | भौतिकी में, थर्मोडायनामिक्स प्रणाली और उसके परिवेश को सम्मिलित करने वाली प्रक्रियाओं पर प्रारम्भ होता है, और "एंडोथर्मिक" शब्द का उपयोग उस प्रतिक्रिया का वर्णन करने के लिए किया जाता है जहां प्रणाली द्वारा ऊर्जा को "(साथ) अंदर" लिया जाता है (बनाम "एक्सोथर्मिक" प्रतिक्रिया, जो प्रारम्भ करती है) ऊर्जा "बाहर की ओर") | ||
जीव विज्ञान में, थर्मोरेग्यूलेशन अपने शरीर के तापमान को बनाए रखने के लिए | जीव विज्ञान में, थर्मोरेग्यूलेशन अपने शरीर के तापमान को बनाए रखने के लिए जीव की क्षमता है, और शब्द एंडोथर्म जीव को संदर्भित करता है जो अपने आंतरिक शारीरिक कार्यों (बनाम एक्टोथर्म, जो बाहरी पर निर्भर करता है, द्वारा उत्पन्न ऊष्मा का उपयोग करके भीतर से ऐसा कर सकता है।, पर्यावरणीय गर्मी स्रोत) पर्याप्त तापमान बनाए रखने के लिए। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 13:48, 25 June 2023
थर्मोकेमिस्ट्री में, एंडोथर्मिक प्रक्रिया (from Greek ἔνδον (endon) 'अंतर्गत', and θερμ- (therm) 'hot, warm') प्रणाली की थैलीपी H (या आंतरिक ऊर्जा U) में वृद्धि के साथ कोई भी थर्मोडायनामिक प्रक्रिया होती है।[1] ऐसी प्रक्रिया में, बंद प्रणाली सामान्यतः अपने पर्यावरण (प्रणाली) से थर्मल ऊर्जा को अवशोषित करती है, जो प्रणाली में ऊष्मा हस्तांतरण करती है। इस प्रकार, एंडोथर्मिक प्रतिक्रिया सामान्यतः प्रणाली के तापमान में वृद्धि और पर्यावरण में कमी की ओर ले जाती है। यह रासायनिक प्रक्रिया हो सकती है, जैसे कि अमोनियम नाइट्रेट (NH4NO3) को पानी में (H2O), भंग करना या भौतिक प्रक्रिया, जैसे कि बर्फ के टुकड़े का पिघलना आदि।
यह शब्द 19 वीं सदी के फ्रांसीसी रसायनज्ञ मार्सेलिन बर्थेलोट द्वारा गढ़ा गया था। एंडोथर्मिक प्रक्रिया के विपरीत एक्सोथर्मिक प्रक्रिया है, जो ऊर्जा को प्रारम्भ करती है या ऊर्जा देती है, सामान्यतः ऊष्मा के रूप में और कभी -कभी विद्युत ऊर्जा के रूप में होती है।इस प्रकार प्रत्येक शब्द (एंडोथर्मिक और एक्सोथर्मिक) उपसर्ग को संदर्भित करता है जहां ऊष्मा (या विद्युत ऊर्जा) प्रक्रिया होती है।
रसायन विज्ञान में
विभिन्न प्रक्रियाओं (राज्य में परिवर्तन, रासायनिक प्रतिक्रियाओं) के अंतर्गत बॉन्ड टूटने और गठन के कारण, सामान्यतः ऊर्जा में परिवर्तन होता है। यदि गठन बॉन्ड की ऊर्जा, ब्रेकिंग बॉन्ड की ऊर्जा से अधिक है, तो ऊर्जा प्रारम्भ की जाती है। यह एक्सोथर्मिक प्रतिक्रिया के रूप में जाना जाता है। चूँकि, यदि प्रारम्भ की जा रही ऊर्जा की तुलना में बंधनों को तोड़ने के लिए अधिक ऊर्जा की आवश्यकता होती है, तो ऊर्जा को उठाया जाता है। इसलिए, यह एंडोथर्मिक प्रतिक्रिया होती है।[2]
विवरण
कोई प्रक्रिया स्वतःस्फूर्त रूप से घटित हो सकती है या नहीं यह न केवल एन्थैल्पी परिवर्तन पर बल्कि एन्ट्रापी परिवर्तन (∆S) और निरपेक्ष तापमान T पर भी निर्भर करता है। यदि प्रक्रिया निश्चित तापमान पर सहज प्रक्रिया होती है, तो उत्पादों में कम थर्मोडायनामिक मुक्त ऊर्जा होती है I G = H – TS अभिकारकों की तुलना में (एक्सगेरोनिक प्रक्रिया),[1] भले ही उत्पादों की थैलीपी अधिक होती हो। इस प्रकार, एंडोथर्मिक प्रक्रिया को सामान्यतः एन्ट्रापी उत्पादन (∆S > 0) की आवश्यकता होती है, जो एन्थैल्पी में प्रतिकूल वृद्धि को समाप्त कर देता है जिससे अभी भी ∆G < 0 हो। जबकि एंडोथर्मिक चरण उच्च एन्ट्रापी के अधिक अव्यवस्थित राज्यों में संक्रमण करता है,उदाहरण के लिए पिघलना और वाष्पीकरण, सामान्य होता हैं, मध्यम तापमान पर सहज रासायनिक प्रक्रियाएं संभवतः ही कभी एंडोथर्मिक होती हैं। काल्पनिक प्रबल एंडोथर्मिक प्रक्रिया में एन्थैल्पी वृद्धि ∆H ≫ 0 परिणामस्वरूप सामान्यतः ∆G = ∆H – T∆S > 0 होता है, जिसका अर्थ है कि प्रक्रिया नहीं होगी (जब तक कि विद्युत या फोटॉन ऊर्जा द्वारा संचालित न हो)। एंडोथर्मिक और एक्सगेरोनिक प्रक्रिया का उदाहरण इस प्रकार है
उदाहरण
- वाष्पीकरण
- उच्च बनाने की क्रिया (चरण संक्रमण)
- अल्केन्स का क्रैकिंग (रसायन विज्ञान)
- थर्मल अपघटन
- हाइड्रोलिसिस
- तारकीय कोर में निकल की तुलना में भारी तत्वों का न्यूक्लियोसिंथेसिस
- उच्च-ऊर्जा न्यूट्रॉन एंडोथर्मिक प्रक्रिया में लिथियम -7 से ट्रिटियम का उत्पादन कर सकते हैं, 2.466 मेव का उपभोग कर सकते हैं। यह तब पता चला जब 1954 के कैसल ब्रावो उच्च उपज परमाणु परीक्षण के कारण ने अप्रत्याशित रूप से उच्च उपज का उत्पादन किया हैं।[3]
- सुपरनोवा में लोहे की तुलना में भारी तत्वों का परमाणु संलयन[4]
- बेरियम हाइड्रॉक्साइड और अमोनियम क्लोराइड को साथ में भंग करना
- साइट्रिक एसिड और बेकिंग सोडा को साथ में भंग करना[5]
एंडोथर्मिक और एंडोथर्म के मध्य अंतर
शब्द एंडोथर्मिक और एंडोथर्म दोनों प्राचीन ग्रीक δν andν एंडोन से और ηρμ, थर्मो ऊष्मा से व्युत्पन्न हुए हैं, लेकिन संदर्भ के आधार पर, उनके बहुत अलग अर्थ हो सकते हैं।
भौतिकी में, थर्मोडायनामिक्स प्रणाली और उसके परिवेश को सम्मिलित करने वाली प्रक्रियाओं पर प्रारम्भ होता है, और "एंडोथर्मिक" शब्द का उपयोग उस प्रतिक्रिया का वर्णन करने के लिए किया जाता है जहां प्रणाली द्वारा ऊर्जा को "(साथ) अंदर" लिया जाता है (बनाम "एक्सोथर्मिक" प्रतिक्रिया, जो प्रारम्भ करती है) ऊर्जा "बाहर की ओर")
जीव विज्ञान में, थर्मोरेग्यूलेशन अपने शरीर के तापमान को बनाए रखने के लिए जीव की क्षमता है, और शब्द एंडोथर्म जीव को संदर्भित करता है जो अपने आंतरिक शारीरिक कार्यों (बनाम एक्टोथर्म, जो बाहरी पर निर्भर करता है, द्वारा उत्पन्न ऊष्मा का उपयोग करके भीतर से ऐसा कर सकता है।, पर्यावरणीय गर्मी स्रोत) पर्याप्त तापमान बनाए रखने के लिए।
संदर्भ
- ↑ 1.0 1.1 Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).Principle of Modern Chemistry, Brooks Cole. p. 617. ISBN 978-1305079113
- ↑ "एक्सोथर्मिक और एंडोथर्मिक प्रतिक्रियाएं | उच्च विद्यालय रसायन विज्ञान के लिए ऊर्जा नींव". highschoolenergy.acs.org. Retrieved 2021-04-11.
- ↑ Austin, Patrick (January 1996). "ट्रिटियम: ट्रिटियम का उत्पादन करने के लिए ऊर्जा विभाग के फैसले के पर्यावरण, स्वास्थ्य, बजटीय और रणनीतिक प्रभाव". Institute for Energy and Environmental Research. Retrieved 2010-09-15.
- ↑ Qian, Y.-Z.; Vogel, P.; Wasserburg, G. J. (1998). "Diverse Supernova Sources for the r-Process". Astrophysical Journal 494 (1): 285–296. arXiv:astro-ph/9706120. Bibcode:1998ApJ...494..285Q. doi:10.1086/305198.
- ↑ "द्रव्यमान के साथ खिलवाड़". WGBH. 2005. Retrieved 2020-05-28.
इस पृष्ठ में गुम आंतरिक लिंक की सूची
बाहरी संबंध
- Endothermic Definition – MSDS Hyper-Glossary]