एंडोथर्मिक प्रक्रिया: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
== रसायन विज्ञान में == | == रसायन विज्ञान में == | ||
विभिन्न प्रक्रियाओं ( | विभिन्न प्रक्रियाओं (अवस्था में परिवर्तन, रासायनिक प्रतिक्रिया) के अंतर्गत बंधनों के विखंडन और बनने के कारण सामान्यतः ऊर्जा में परिवर्तन होता है। यदि बनने वाले बंधन की ऊर्जा विखंडित होने वाले बंधन की ऊर्जा से अधिक है, तो ऊर्जा निकलती है। इसे ऊष्माक्षेपी प्रतिक्रिया के रूप में जाना जाता है। चूँकि, यदि बंधनों के विखंडन के लिए प्रारम्भ होने वाली ऊर्जा से अधिक ऊर्जा की आवश्यकता होती है, तो ऊर्जा प्राप्त की जाती है। इसलिए, यह एंडोथर्मिक प्रतिक्रिया होती है।<ref>{{Cite web|title=एक्सोथर्मिक और एंडोथर्मिक प्रतिक्रियाएं {{!}} उच्च विद्यालय रसायन विज्ञान के लिए ऊर्जा नींव|url=https://highschoolenergy.acs.org/content/hsef/en/how-can-energy-change/exothermic-endothermic.html#:~:text=Chemical%20reactions%20that%20release%20energy,the%20bonds%20in%20the%20reactants.|access-date=2021-04-11|website=highschoolenergy.acs.org}}</ref> | ||
== विवरण == | == विवरण == | ||
कोई प्रक्रिया स्वतः स्फूर्त रूप से घटित हो सकती है या नहीं यह न केवल एन्थैल्पी परिवर्तन पर अन्यथा एन्ट्रापी परिवर्तन ({{math|∆''S''}}) और निरपेक्ष तापमान {{mvar|T}} पर भी निर्भर करता है। यदि प्रक्रिया निश्चित तापमान पर सहज प्रक्रिया होती है, तो उत्पादों में कम थर्मोडायनामिक मुक्त ऊर्जा होती है I {{math|1=''G'' = ''H'' – ''TS''}} अभिकारकों की तुलना में (एक्सगेरोनिक प्रक्रिया),<ref name="Oxtoby8th"/> भले ही उत्पादों की एन्थैल्पी अधिक होती हो। इस प्रकार, एंडोथर्मिक प्रक्रिया को सामान्यतः एन्ट्रापी उत्पादन ({{math|∆''S'' > 0}}) की आवश्यकता होती है, जो एन्थैल्पी में प्रतिकूल वृद्धि को समाप्त कर देता है जिससे अभी भी {{math|∆''G'' < 0}} हो। जबकि एंडोथर्मिक चरण उच्च एन्ट्रापी के अधिक अव्यवस्थित स्थितियों में संक्रमण करता है,उदाहरण के लिए पिघलना और वाष्पीकरण, सामान्य होता हैं, मध्यम तापमान पर सहज रासायनिक प्रक्रियाएं संभवतः ही कभी एंडोथर्मिक होती हैं। काल्पनिक प्रबल एंडोथर्मिक प्रक्रिया में एन्थैल्पी वृद्धि {{math| ∆''H'' ≫ 0}} परिणामस्वरूप सामान्यतः {{math|1=∆''G'' = ∆''H'' – ''T''∆''S'' > 0}} होता है, जिसका अर्थ है कि प्रक्रिया नहीं होगी (जब तक कि विद्युत या फोटॉन ऊर्जा द्वारा संचालित न हो)। एंडोथर्मिक और एक्सगेरोनिक प्रक्रिया का उदाहरण इस प्रकार है: | कोई प्रक्रिया स्वतः स्फूर्त रूप से घटित हो सकती है या नहीं यह न केवल एन्थैल्पी परिवर्तन पर अन्यथा एन्ट्रापी परिवर्तन ({{math|∆''S''}}) और निरपेक्ष तापमान {{mvar|T}} पर भी निर्भर करता है। यदि प्रक्रिया निश्चित तापमान पर सहज प्रक्रिया होती है, तो उत्पादों में कम थर्मोडायनामिक मुक्त ऊर्जा होती है I {{math|1=''G'' = ''H'' – ''TS''}} अभिकारकों की तुलना में (एक्सगेरोनिक प्रक्रिया),<ref name="Oxtoby8th"/> भले ही उत्पादों की एन्थैल्पी अधिक होती हो। इस प्रकार, एंडोथर्मिक प्रक्रिया को सामान्यतः एन्ट्रापी उत्पादन ({{math|∆''S'' > 0}}) की आवश्यकता होती है, जो एन्थैल्पी में प्रतिकूल वृद्धि को समाप्त कर देता है जिससे अभी भी {{math|∆''G'' < 0}} हो। जबकि एंडोथर्मिक चरण उच्च एन्ट्रापी के अधिक अव्यवस्थित स्थितियों में संक्रमण करता है,उदाहरण के लिए पिघलना और वाष्पीकरण, सामान्य होता हैं, मध्यम तापमान पर सहज रासायनिक प्रक्रियाएं संभवतः ही कभी एंडोथर्मिक होती हैं। काल्पनिक प्रबल एंडोथर्मिक प्रक्रिया में एन्थैल्पी वृद्धि {{math| ∆''H'' ≫ 0}} परिणामस्वरूप सामान्यतः {{math|1=∆''G'' = ∆''H'' – ''T''∆''S'' > 0}} होता है, जिसका अर्थ है कि प्रक्रिया नहीं होगी (जब तक कि विद्युत या फोटॉन ऊर्जा द्वारा संचालित न हो)। एंडोथर्मिक और एक्सगेरोनिक प्रक्रिया का उदाहरण इस प्रकार है: |
Revision as of 11:39, 28 June 2023
थर्मोकेमिस्ट्री में, एंडोथर्मिक प्रक्रिया प्रणाली की एन्थैल्पी H (या आंतरिक ऊर्जा U) में वृद्धि के साथ कोई भी थर्मोडायनामिक प्रक्रिया होती है।[1] ऐसी प्रक्रिया में, संवृत प्रणाली सामान्यतः अपने पर्यावरण (प्रणाली) से थर्मल ऊर्जा को अवशोषित करती है, जो प्रणाली में ऊष्मा हस्तांतरण करती है। इस प्रकार, एंडोथर्मिक प्रतिक्रिया सामान्यतः प्रणाली के तापमान में वृद्धि और पर्यावरण में अल्पता की ओर ले जाती है। यह रासायनिक प्रक्रिया हो सकती है, जैसे कि अमोनियम नाइट्रेट (NH4NO3) को पानी में (H2O), भंग करना या भौतिक प्रक्रिया, जैसे कि बर्फ के टुकड़े का पिघलना आदि।
यह शब्द 19 वीं दशक के फ्रांसीसी रसायनज्ञ मार्सेलिन बर्थेलोट द्वारा विकसित किया गया था। एंडोथर्मिक प्रक्रिया के विपरीत एक्सोथर्मिक प्रक्रिया है, जो ऊर्जा को प्रारम्भ करती है या ऊर्जा प्रदान करती है, सामान्यतः ऊष्मा के रूप में और कभी-कभी विद्युत ऊर्जा के रूप में होती है। इस प्रकार प्रत्येक शब्द (एंडोथर्मिक और एक्सोथर्मिक) उपसर्ग को संदर्भित करता है जहां ऊष्मा (या विद्युत ऊर्जा) प्रक्रिया होती है।
रसायन विज्ञान में
विभिन्न प्रक्रियाओं (अवस्था में परिवर्तन, रासायनिक प्रतिक्रिया) के अंतर्गत बंधनों के विखंडन और बनने के कारण सामान्यतः ऊर्जा में परिवर्तन होता है। यदि बनने वाले बंधन की ऊर्जा विखंडित होने वाले बंधन की ऊर्जा से अधिक है, तो ऊर्जा निकलती है। इसे ऊष्माक्षेपी प्रतिक्रिया के रूप में जाना जाता है। चूँकि, यदि बंधनों के विखंडन के लिए प्रारम्भ होने वाली ऊर्जा से अधिक ऊर्जा की आवश्यकता होती है, तो ऊर्जा प्राप्त की जाती है। इसलिए, यह एंडोथर्मिक प्रतिक्रिया होती है।[2]
विवरण
कोई प्रक्रिया स्वतः स्फूर्त रूप से घटित हो सकती है या नहीं यह न केवल एन्थैल्पी परिवर्तन पर अन्यथा एन्ट्रापी परिवर्तन (∆S) और निरपेक्ष तापमान T पर भी निर्भर करता है। यदि प्रक्रिया निश्चित तापमान पर सहज प्रक्रिया होती है, तो उत्पादों में कम थर्मोडायनामिक मुक्त ऊर्जा होती है I G = H – TS अभिकारकों की तुलना में (एक्सगेरोनिक प्रक्रिया),[1] भले ही उत्पादों की एन्थैल्पी अधिक होती हो। इस प्रकार, एंडोथर्मिक प्रक्रिया को सामान्यतः एन्ट्रापी उत्पादन (∆S > 0) की आवश्यकता होती है, जो एन्थैल्पी में प्रतिकूल वृद्धि को समाप्त कर देता है जिससे अभी भी ∆G < 0 हो। जबकि एंडोथर्मिक चरण उच्च एन्ट्रापी के अधिक अव्यवस्थित स्थितियों में संक्रमण करता है,उदाहरण के लिए पिघलना और वाष्पीकरण, सामान्य होता हैं, मध्यम तापमान पर सहज रासायनिक प्रक्रियाएं संभवतः ही कभी एंडोथर्मिक होती हैं। काल्पनिक प्रबल एंडोथर्मिक प्रक्रिया में एन्थैल्पी वृद्धि ∆H ≫ 0 परिणामस्वरूप सामान्यतः ∆G = ∆H – T∆S > 0 होता है, जिसका अर्थ है कि प्रक्रिया नहीं होगी (जब तक कि विद्युत या फोटॉन ऊर्जा द्वारा संचालित न हो)। एंडोथर्मिक और एक्सगेरोनिक प्रक्रिया का उदाहरण इस प्रकार है:
उदाहरण
- वाष्पीकरण
- उच्च बनाने की क्रिया (चरण संक्रमण)
- अल्केन्स का क्रैकिंग (रसायन विज्ञान)
- थर्मल अपघटन
- हाइड्रोलिसिस
- तारकीय कोर में निकल की तुलना में भारी तत्वों का न्यूक्लियोसिंथेसिस
- उच्च-ऊर्जा न्यूट्रॉन एंडोथर्मिक प्रक्रिया में लिथियम -7 से ट्रिटियम का उत्पादन कर सकते हैं, 2.466 मेव का उपभोग कर सकते हैं। यह तब ज्ञात हुआ जब 1954 के कैसल ब्रावो उच्च उपज परमाणु परीक्षण के कारण ने अप्रत्याशित रूप से उच्च उपज का उत्पादन किया हैं।[3]
- सुपरनोवा में लोहे की तुलना में भारी तत्वों का परमाणु संलयन[4]
- बेरियम हाइड्रॉक्साइड और अमोनियम क्लोराइड को साथ में भंग करना
- साइट्रिक एसिड और बेकिंग सोडा को साथ में भंग करना[5]
एंडोथर्मिक और एंडोथर्म के मध्य अंतर
शब्द एंडोथर्मिक और एंडोथर्म दोनों प्राचीन ग्रीक δν andν एंडोन से और ηρμ, थर्मो ऊष्मा से व्युत्पन्न हुए हैं, किन्तु संदर्भ के आधार पर, उनके अधिक भिन्न अर्थ हो सकते हैं।
भौतिकी में, थर्मोडायनामिक्स प्रणाली और उसके परिवेश को सम्मिलित करने वाली प्रक्रियाओं पर प्रारम्भ होता है, और "एंडोथर्मिक" शब्द का उपयोग उस प्रतिक्रिया का वर्णन करने के लिए किया जाता है जहां प्रणाली द्वारा ऊर्जा को "(साथ) अंदर" लिया जाता है और ("एक्सोथर्मिक" प्रतिक्रिया, जो ऊर्जा "बाहर की ओर") प्रारम्भ करती है।
जीव विज्ञान में, थर्मोरेग्यूलेशन अपने शरीर के तापमान को बनाए रखने के लिए जीव की क्षमता होती है, और शब्द एंडोथर्म जीव को संदर्भित करता है जो अपने आंतरिक शारीरिक कार्यों (एक्टोथर्म के प्रति, जो बाह्य स्रोतों पर निर्भर करता है) द्वारा उत्पन्न ऊष्मा का उपयोग करके अंदर से ऐसा कर सकता है, जो पर्याप्त तापमान बनाए रखने के लिए बाहरी, पर्यावरणीय ताप स्रोतों पर निर्भर करता है)।
संदर्भ
- ↑ 1.0 1.1 Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).Principle of Modern Chemistry, Brooks Cole. p. 617. ISBN 978-1305079113
- ↑ "एक्सोथर्मिक और एंडोथर्मिक प्रतिक्रियाएं | उच्च विद्यालय रसायन विज्ञान के लिए ऊर्जा नींव". highschoolenergy.acs.org. Retrieved 2021-04-11.
- ↑ Austin, Patrick (January 1996). "ट्रिटियम: ट्रिटियम का उत्पादन करने के लिए ऊर्जा विभाग के फैसले के पर्यावरण, स्वास्थ्य, बजटीय और रणनीतिक प्रभाव". Institute for Energy and Environmental Research. Retrieved 2010-09-15.
- ↑ Qian, Y.-Z.; Vogel, P.; Wasserburg, G. J. (1998). "Diverse Supernova Sources for the r-Process". Astrophysical Journal 494 (1): 285–296. arXiv:astro-ph/9706120. Bibcode:1998ApJ...494..285Q. doi:10.1086/305198.
- ↑ "द्रव्यमान के साथ खिलवाड़". WGBH. 2005. Retrieved 2020-05-28.
इस पृष्ठ में गुम आंतरिक लिंक की सूची
बाहरी संबंध
- Endothermic Definition – MSDS Hyper-Glossary]