क्रिया (भौतिकी): Difference between revisions
No edit summary |
No edit summary |
||
Line 28: | Line 28: | ||
=== क्रिया समाकल का निम्नीकरण === | === क्रिया समाकल का निम्नीकरण === | ||
क्रिया एक वैकल्पिक पद्धति का एक भाग है जिसके द्वारा ऐसे गति के समीकरणों को खोजै जाता है। चिरसम्मत यांत्रिकी यह अभिधारित करती है कि किसी भौतिकी प्रणाली द्वारा वास्तव में अनुसरित पथ वह होता है जिसमें क्रिया न्यूनतमीकृत होती है, या अधिक सामान्यतः से कहा जाये तो, स्थिर होती है। दुसरे शब्दों में, क्रिया एक विचरण सिद्धांत को संतुष्ट करती है: स्थिर क्रिया का सिद्धांत (नीचे भी देखें)। क्रिया एक समाकल द्वारा परिभाषित होती है, तथा किसी प्रणाली की गति के चिरसम्मत समीकरणों को समाकल के मान को न्यूनतमीकृत कर के प्राप्त किया जा सकता है। | |||
यह सरल सिद्धांत भौतिकी में गहरी अंतर्दृष्टि प्रदान करता है, और आधुनिक | यह सरल सिद्धांत भौतिकी में गहरी अंतर्दृष्टि प्रदान करता है, और आधुनिक सैद्धांतिक भौतिकी में एक महत्वपूर्ण अवधारणा है। | ||
== इतिहास == | == इतिहास == |
Revision as of 13:12, 27 October 2022
Action | |
---|---|
Si इकाई | Joule-second |
अन्य इकाइयां | J⋅Hz−1 |
भौतिक विज्ञान में, क्रिया एक संख्यात्मक मान है जो किसी भौतिक प्रणाली में समय के साथ होने वाले बदलाव को दर्शाती है। चूंकि प्रणाली के गतिय समीकरण स्थिर क्रिया के सिद्धांत से प्राप्त किये जा सकते हैं इसलिए क्रिया उल्लेखनीय होती है।
एक कण के निर्दिष्ट वेग के साथ चलने की सामान्य परिस्थिति में क्रिया का आंकलन करने के लिए, कण द्वारा तय की गयी दूरी एवं उसके संवेग के गुणज तथा कण की गतिज ऊर्जा के दुगना एवं उसके द्वारा इस ऊर्जा को धारण करने की समय अवधि के गुणज को, जबकि इस ऊर्जा को विचाराधीन समय की अवधि में जोड़ा गया हो, इसके पथ के साथ या समकक्ष रूप से जोड़ा जाता है। अधिक जटिल प्रणालियों के लिए, ऐसी सभी भौतिक राशियों को एक साथ जोड़ा जाता है।
औपचारिक रूप से, क्रिया एक गणितीय फलन है जो प्रणाली के प्रक्षेप पथ, जिसे पथ या इतिहास भी कहा जाता है, को इसके तर्क के रूप में लेता है और इसका परिणाम एक वास्तविक संख्या के रूप में होता है। सामान्यतः, क्रिया का मान भिन्न-भिन्न
पथों के लिए अलग-अलग होता है। [1] ऊर्जा × समय या संवेग × लंबाई क्रिया के विमाएँ हैं, और इसकी SI (सिस्टम इंटरनेशनल डी यूनिट्स /अंतर्राष्ट्रीय इकाइयों की प्रणाली) मात्रक जूल-सेकंड (प्लांक स्थिरांक h की तरह) है। [2]
परिचय
हैमिल्टन का सिद्धांत कहता है कि किसी भी भौतिकी प्रणाली के गति के अवकल समीकरणों को उसके समकक्ष समाकलन समीकरण के रूप में पुनः सूत्रित किया जा सकता है। अतः गतिकीय नमूनों को सूत्रित करने के लिए दो भिन्न पद्धतियाँ उपलब्ध हैं।
यह सिद्धांत केवल एक कण के चिरसम्मत यांत्रिकी पर ही नहीं अपितु चिरसम्मत क्षेत्रों जैसे विद्युतचुम्बकीय तथा गुरुत्वीय क्षेत्रों पर भी लागू होता है। हैमिल्टन के सिद्धांत को प्रमात्रा यांत्रिकी तथा प्रमात्रा क्षेत्र सिद्धांत तक भी विस्तारित किया गया है - विशेष रूप से प्रमात्रा यांत्रिकी का पथ समाकलन सूत्रीकरण इस अवधारणा का उपयोग करता है - जहाँ एक भौतिकी प्रणाली, अक्रमतः पूर्वक, संभव पथों में से किसी एक का अनुसरण करती है जबकि प्रत्येक पथ के लिए प्रायिकता आयाम की प्रावस्था (फ़ेज़) उस पथ की क्रिया द्वारा निर्धारित होती है।
अवकल समीकरण का हल
अनुभवजन्य नियमों को प्रायः अवकल समीकरणों के रूप में व्यक्त किया जाता है जो कि स्थिति तथा वेग जैसी भौतिक राशियों में समय, स्थान अथवा सामान्यीकरण के साथ होने वाले निरंतर परिवर्तन का विवरण देते हैं। स्थिति के लिए दिए गए आरंभिक एवं सीमान्त उपबंधों के साथ, इन अनुभवजन्य समीकरणों का "हल" एक या एक से अधिक फलन होता है जो कि प्रणाली के व्यवहार का वर्णन करते हैं और उन्हें गति के समीकरणों के नाम से जाना जाता है।
क्रिया समाकल का निम्नीकरण
क्रिया एक वैकल्पिक पद्धति का एक भाग है जिसके द्वारा ऐसे गति के समीकरणों को खोजै जाता है। चिरसम्मत यांत्रिकी यह अभिधारित करती है कि किसी भौतिकी प्रणाली द्वारा वास्तव में अनुसरित पथ वह होता है जिसमें क्रिया न्यूनतमीकृत होती है, या अधिक सामान्यतः से कहा जाये तो, स्थिर होती है। दुसरे शब्दों में, क्रिया एक विचरण सिद्धांत को संतुष्ट करती है: स्थिर क्रिया का सिद्धांत (नीचे भी देखें)। क्रिया एक समाकल द्वारा परिभाषित होती है, तथा किसी प्रणाली की गति के चिरसम्मत समीकरणों को समाकल के मान को न्यूनतमीकृत कर के प्राप्त किया जा सकता है।
यह सरल सिद्धांत भौतिकी में गहरी अंतर्दृष्टि प्रदान करता है, और आधुनिक सैद्धांतिक भौतिकी में एक महत्वपूर्ण अवधारणा है।
इतिहास
अवधारणा के विकास के दौरान क्रिया को अब कई अप्रचलित तरीकों से परिभाषित किया गया था।[3]
- गॉटफ्रीड लाइबनिज़, जोहान बर्नौली और पियरे लुई मौपर्टुइस ने प्रकाश के लिए कार्रवाई को इसकी गति या इसके पथ की लंबाई के साथ उलटा गति के अभिन्न अंग के रूप में परिभाषित किया।
- लियोनहार्ड यूलर (और, संभवतः, लाइबनिज़) ने एक भौतिक कण के लिए कार्रवाई को अंतरिक्ष के माध्यम से अपने पथ के साथ कण की गति के अभिन्न अंग के रूप में परिभाषित किया।
- पियरे लुई माउपर्टुइस ने एक लेख के भीतर कार्रवाई की कई तदर्थ और विरोधाभासी परिभाषाएं पेश कीं, जो संभावित ऊर्जा के रूप में, आभासी गतिज ऊर्जा के रूप में और एक संकर के रूप में परिभाषित करती हैं, जो टकराव में गति के संरक्षण को सुनिश्चित करती हैं। [4]
गणितीय परिभाषा
विविधताओं के कलन का उपयोग करते हुए, एक भौतिक प्रणाली का विकास (यानी, प्रणाली वास्तव में एक राज्य से दूसरे राज्य में कैसे आगे बढ़ती है) गणितीय भाषा में व्यक्त, कार्रवाई के एक स्थिर बिंदु (आमतौर पर, न्यूनतम) से मेल खाती है।
सामान्यतः भौतिकी में "कार्रवाई" की कई अलग-अलग परिभाषाएं दी गयी हैं। [5] [6] कार्रवाई आमतौर पर समय के साथ एक अभिन्न अंग है। हालाँकि, जब कार्रवाई फ़ील्ड से संबंधित होती है, तो इसे स्थानिक चरों पर भी एकीकृत किया जा सकता है। कुछ मामलों में, क्रिया को भौतिक प्रणाली द्वारा अनुसरण किए गए पथ के साथ एकीकृत किया जाता है।
क्रिया को आम तौर पर समय के साथ एक सिस्टम के प्रारंभिक समय और सिस्टम के विकास के अंतिम समय के बीच सिस्टम के पथ के अभिन्न के रूप में दर्शाया जाता है: [7]
जहां समाकलन L को लैग्रेंजियन कहा जाता है। क्रिया अभिन्न को अच्छी तरह से परिभाषित करने के लिए, प्रक्षेपवक्र को समय और स्थान में बांधा जाना चाहिए।
क्रिया के आयाम हैं [ऊर्जा] × [समय], और इसकी SI इकाई जूल -सेकंड है, जो कोणीय गति की इकाई के समान है।
चिरसम्मत भौतिकी में क्रिया
चिरसम्मत भौतिकी में, "क्रिया" शब्द के कई अर्थ हैं।
क्रिया (कार्यात्मक)
आमतौर पर शब्द का प्रयोग कार्यात्मक के लिए किया जाता है जो इनपुट के रूप में समय और ( फ़ील्ड के लिए) स्थान का कार्य लेता है और एक अदिश देता है। [8] [9] शास्त्रीय यांत्रिकी (classical mechanics) में, इनपुट फ़ंक्शन दो बार t 1 और t 2 के बीच सिस्टम का विकास q ( t ) है, जहां q सामान्यीकृत निर्देशांक (generalized coordinates) का प्रतिनिधित्व करता है। कार्य दो समय के बीच एक इनपुट विकास के लिए लैग्रैन्जियन एल के अभिन्न के रूप में परिभाषित किया गया है:
जहां विकास के अंतिम बिंदु तय होते हैं और और के रूप में परिभाषित होते हैं। हैमिल्टन के सिद्धांत के अनुसार, वास्तविक विकास q सत्य ( t ) या qtrue(t) एक विकास है जिसके लिए क्रिया स्थिर है (एक न्यूनतम, अधिकतम, या एक सैडल बिंदु )। इस सिद्धांत का परिणाम लैग्रैंगियन यांत्रिकी (Lagrangian mechanics) में गति के समीकरणों में होता है।
संक्षिप्त क्रिया (कार्यात्मक)
, एक कार्यात्मक के रूप में निरूपित किया जाता है। यहां इनपुट फ़ंक्शन समय के साथ इसके पैरामीटरकरण के संबंध में भौतिक प्रणाली द्वारा अनुसरण किया जाने वाला पथ है। उदाहरण के लिए, ग्रह की कक्षा का पथ एक दीर्घवृत्त है, और एक समान गुरुत्वाकर्षण क्षेत्र में एक कण का पथ एक परवलय है; दोनों ही मामलों में, पथ इस बात पर निर्भर नहीं करता है कि कण कितनी तेजी से पथ को पार करता है। संक्षिप्त क्रिया सामान्यीकृत निर्देशांक में पथ के साथ सामान्यीकृत गति के अभिन्न के रूप में परिभाषित किया गया है:
माउपर्टुइस के सिद्धांत के अनुसार, सच्चा मार्ग वह मार्ग है जिसके लिए संक्षिप्त क्रिया होती है।
हैमिल्टन का प्रमुख कार्य
हैमिल्टन का प्रमुख कार्य क्रिया कार्यात्मक (action functional ) प्राप्त होता है प्रारंभिक समय निर्धारित करके और प्रारंभिक समापन बिंदु ऊपरी समय सीमा की अनुमति देते हुए और दूसरा समापन बिंदु भिन्न करने के लिए। हैमिल्टन का प्रमुख कार्य हैमिल्टन-जैकोबी समीकरण को संतुष्ट करता है (Hamilton's principal function satisfies the Hamilton–Jacobi equation), जो शास्त्रीय यांत्रिकी (classical mechanics) का एक सूत्रीकरण है। श्रोडिंगर समीकरण(Schrödinger equation) के साथ समानता के कारण, हैमिल्टन-जैकोबी समीकरण, यकीनन, क्वांटम यांत्रिकी के साथ सबसे सीधा लिंक प्रदान करता है।
हैमिल्टन की विशेषता कार्य
जब कुल ऊर्जा E संरक्षित हो जाती है, तो हैमिल्टन-जैकोबी समीकरण (Hamilton–Jacobi equations) को चरों के योगात्मक पृथक्करण (additive separation of variables) से हल किया जा सकता है:
जहाँ समय-स्वतंत्र फलन W ( q 1, q 2, ..., q N ) को हैमिल्टन (Hamilton)का अभिलक्षणिक फलन (Hamilton's characteristic function) कहा जाता है। इस फ़ंक्शन के भौतिक महत्व को इसके कुल समय व्युत्पन्न (total time derivative) लेने से समझा जाता है
इसे देने के लिए समाकलित ( integrated) किया जा सकता है
जो सिर्फ संक्षिप्त क्रिया (abbreviated action.) है।
हैमिल्टन -जैकोबी समीकरणों के अन्य समाधान
हैमिल्टन-जैकोबी समीकरण (Hamilton–Jacobi equations) अक्सर योगात्मक पृथक्करण (additive separability) द्वारा हल किए जाते हैं; कुछ मामलों में, समाधान के अलग-अलग पद, जैसे, S k ( q k ), को "क्रिया" भी कहा जाता है। [10]
एक सामान्यीकृत समन्वय की क्रिया
यह क्रिया-कोण निर्देशांक में एक एकल चर J k है, जिसे चरण स्थान में एक बंद पथ के चारों ओर एकल सामान्यीकृत गति को एकीकृत करके परिभाषित किया गया है, जो घूर्णन या दोलन गति के अनुरूप है:
चर J k को सामान्यीकृत निर्देशांक q k की "क्रिया" कहा जाता है; क्रिया-कोण निर्देशांकों के तहत अधिक पूर्ण रूप से वर्णित कारणों के लिए, J k से संबंधित विहित चर संयुग्म इसका "कोण" w k है। एकीकरण केवल एक चर q k के ऊपर है और इसलिए, उपरोक्त संक्षिप्त क्रिया में एकीकृत डॉट उत्पाद के विपरीत है। चरJ k, S k ( q k ) में परिवर्तन के बराबर होता है क्योंकि q k बंद पथ के चारों ओर भिन्न-भिन्न होता है। ब्याज की कई भौतिक प्रणालियों के लिए, Jk या तो स्थिर (constant) है या बहुत धीरे-धीरे बदलता है; इसलिए, चर Jkअक्सर गड़बड़ी गणना (perturbation calculations) में और एडियाबेटिक इनवेरिएंट निर्धारित करने में उपयोग किया जाता है।
See also
References
- ↑
{{cite encyclopedia}}
: Empty citation (help) - ↑
{{cite encyclopedia}}
: Empty citation (help) - ↑ Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
- ↑ Œuvres de Mr de Maupertuis (pre-1801 Imprint Collection at the Library of Congress).
- ↑ Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
- ↑ Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN 3-527-26954-1 (Verlagsgesellschaft), ISBN 0-89573-752-3 (VHC Inc.)
- ↑ Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
- ↑ The Road to Reality, Roger Penrose, Vintage books, 2007, ISBN 0-679-77631-1
- ↑ T. W. B. Kibble, Classical Mechanics, European Physics Series, McGraw-Hill (UK), 1973, ISBN 0-07-084018-0
- ↑ Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
स्रोत और आगे पढ़ना
एक एनोटेट ग्रंथ सूची के लिए, एडविन एफ। टेलर देखें जो सूची, अन्य बातों के अलावा, निम्नलिखित पुस्तकें
- द कैम्ब्रिज हैंडबुक ऑफ फिजिक्स फॉर्मूला , जी। वान, कैम्ब्रिज यूनिवर्सिटी प्रेस, 2010, ISBN 978-0-521-57507-2।
- कॉर्नेलियस लैंज़ोस , मैकेनिक्स के परिवर्तनशील सिद्धांत (डोवर प्रकाशन, न्यूयॉर्क, 1986)। ISBN 0-486-65067-7। संदर्भ उन सभी को उद्धृत करता है जो इस क्षेत्र का पता लगाते हैं।
- L. D. Landau और E. M. Lifshitz , मैकेनिक्स, कोर्स ऑफ़ थॉरेटरेटिकल फिजिक्स (बटरवर्थ-हेनेनन, 1976), 3 एड।, वॉल्यूम।1। ISBN 0-7506-2896-0।कम से कम कार्रवाई के सिद्धांत के साथ शुरू होता है।
- मैकमिलन एनसाइक्लोपीडिया ऑफ फिजिक्स (साइमन एंड शूस्टर मैकमिलन, 1996), वॉल्यूम 2 में थॉमस ए। ISBN 0-02-897359-3, OCLC 35269891, पृष्ठ 840–842।
- गेराल्ड जे सुसमैन और जैक विजडम , संरचना और शास्त्रीय यांत्रिकी की संरचना और व्याख्या (MIT प्रेस, 2001)।कम से कम कार्रवाई के सिद्धांत के साथ शुरू होता है, आधुनिक गणितीय संकेतन का उपयोग करता है, और कंप्यूटर भाषा में प्रोग्रामिंग करके प्रक्रियाओं की स्पष्टता और स्थिरता की जांच करता है।
- डेयर ए। वेल्स, लैग्रैन्जियन डायनेमिक्स, शाउम की रूपरेखा श्रृंखला (मैकग्रा-हिल, 1967) ISBN 0-07-069258-0, विषय की 350-पृष्ठ व्यापक रूपरेखा।
- रॉबर्ट वेनस्टॉक, भौतिकी और इंजीनियरिंग के लिए अनुप्रयोगों के साथ, भिन्नता का पथरी (डोवर प्रकाशन, 1974)। ISBN 0-486-63069-2।एक पुरानी लेकिन गुडी, औपचारिकता के साथ भौतिकी और इंजीनियरिंग में उपयोग से पहले ध्यान से परिभाषित किया गया।
- वोल्फगैंग Yourgrau और STANLEY MANDELSTAM , [https://books.google.com/books/about/variational_principles_in_dynamics_and_and_q.html?id=owtyrjjxzbyc warational सिद्धांतों (1979)एक अच्छा उपचार जो सिद्धांत के दार्शनिक निहितार्थ से बचता नहीं है और क्वांटम यांत्रिकी के फेनमैन उपचार की प्रशंसा करता है जो बड़े द्रव्यमान की सीमा में कम से कम कार्रवाई के सिद्धांत को कम करता है।
- एडविन एफ। टेलर का पृष्ठ
External links
- Principle of least action interactive Interactive explanation/webpage
]