इलेक्ट्रॉन स्थानांतरण: Difference between revisions

From Vigyanwiki
No edit summary
Line 64: Line 64:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 20/10/2022]]
[[Category:Created On 20/10/2022]]
[[Category:Vigyan Ready]]

Revision as of 11:33, 11 July 2023

इलेक्ट्रॉन स्थानांतरण (ET) तब होता है जब एक इलेक्ट्रॉन एक परमाणु या अणु से दूसरी ऐसी रासायनिक इकाई में स्थानांतरित हो जाता है। ET कुछ प्रकार की रेडोक्स अभिक्रियाओं का एक यंत्रवत विवरण है जिसमें इलेक्ट्रॉनों का स्थानांतरण सम्मिलितहै।[1] इलेक्ट्रोकैमिस्ट्री ईटी अभिक्रिया है। ET अभिक्रियाएं प्रकाश संश्लेषण और कोशिकीय श्वसन के लिए प्रासंगिक हैं। ET अभिक्रियाओं में सामान्यतः संक्रमण धातु जटिल सम्मिलित होते हैं,[2][3] कार्बनिक रसायन विज्ञान में ET कुछ वाणिज्यिक बहुलकीकरण अभिक्रियाओं में एक कदम है। यह फोटोरेडॉक्स उत्प्रेरण की नींव है।

इलेक्ट्रॉन स्थानांतरण की कक्षाएं

आंतरिक क्षेत्र इलेक्ट्रॉन स्थानांतरण

आंतरिक क्षेत्र ET में, ET के समय दो रेडॉक्स केंद्र सहसंयोजक रूप से जुड़े हुए हैं। यह सेतु स्थायी हो सकता है, जिस स्थिति में इलेक्ट्रॉन स्थानांतरण घटना को अंतर-आणविक इलेक्ट्रॉन स्थानांतरण कहा जाता है। सामान्यतः, यद्यपि, सहसंयोजक संबंध अस्थायी होता है, जो ET से ठीक पहले बनता है और फिर ET घटना के बाद वियोजित हो जाता है। ऐसे कारको में, इलेक्ट्रॉन स्थानांतरण को अंतर-आणविक इलेक्ट्रॉन स्थानांतरण कहा जाता है। एक आंतरिक क्षेत्र ET प्रक्रिया का एक प्रसिद्ध उदाहरण जो एक अस्थायी ब्रिज मध्यवर्ती के माध्यम से आगे बढ़ता है [Cr(H2O)6]2+ द्वारा [CoCl(NH3)5]2+ का अपचयन है।इस कारक में, क्लोराइड लिगैंड सेतु बंध लिगैंड है जो सहसंयोजक रेडॉक्स भागीदारों को जोड़ता है।

बाहरी क्षेत्र में इलेक्ट्रॉन स्थानांतरण

बाहरी क्षेत्र ईटी अभिक्रियाओं में, भाग लेने वाले रेडॉक्स केंद्र ईटी घटना के समय किसी भी सेतु के माध्यम से जुड़े नहीं हैं। इसके स्थान में, इलेक्ट्रॉन अंतरिक्ष के माध्यम से कम करने वाले केंद्र से स्वीकर्ता तक पहुंचता है। बाहरी क्षेत्र में इलेक्ट्रॉन स्थानांतरण विभिन्न रासायनिक प्रजातियों के बीच या समान रासायनिक प्रजातियों के बीच हो सकता है जो केवल उनके ऑक्सीकरण अवस्था में भिन्न होते हैं। बाद की प्रक्रिया को स्व-विनिमय कहा जाता है। एक उदाहरण के रूप में, स्व-विनिमय परमैंगनेट और इसके एक-इलेक्ट्रॉन कम सापेक्ष मैंगनेट के बीच ऊर्जा स्तर की अभिक्रिया का वर्णन करता है:

[MnO4] + [MnO4]2− → [MnO4]2− + [Mn*O4]

सामान्यतः, यदि इलेक्ट्रॉन स्थानांतरण लिगैंड प्रतिस्थापन की तुलना में तेज है, तो अभिक्रिया बाहरी क्षेत्र के इलेक्ट्रॉन स्थानांतरण का पालन करेगी।

प्रायःतब होता है जब एक/दोनों अभिकारक निष्क्रिय होते हैं या यदि कोई उपयुक्त सेतुबंध लिगैंड नहीं है।

मार्कस सिद्धांत की एक प्रमुख अवधारणा यह है कि इस तरह की स्व-विनिमय अभिक्रियाओं की दरें गणितीय रूप से अन्योन्य अभिक्रियाओं की दरों से संबंधित हैं।अन्योन्य अभिक्रिया में ऐसे साझेदार सम्मिलित होते हैं जो उनके ऑक्सीकरण अवस्था से अधिक भिन्न होते हैं। एक उदाहरण (कई हजारों में से) आयोडीन द्वारा परमैंगनेट के अपचयन से आयोडीन और, फिर से, मैंगनेट का निर्माण होता है।

बाहरी गोले की अभिक्रिया के पांच चरण

  • 1. अभिकारक एक साथ फैलते हैं, एक एनकाउंटर जटिल बनाते हैं, उनके विलायक आवरणों से बाहर=> पूर्ववर्ती जटिल (कार्य की आवश्यकता =wr)
  • 2. आबंध लंबाई बदलना, विलायक को पुनर्गठित करना => सक्रिय जटिल
  • 3. इलेक्ट्रॉन स्थानांतरण
  • 4. बंधन लंबाई शिथिलता, विलायक अणु => उत्तरवर्ती जटिल
  • 5. उत्पादों का प्रसार (कार्य की आवश्यकता=wp)

विषम इलेक्ट्रॉन स्थानांतरण

विषम इलेक्ट्रॉन स्थानांतरण में, एक इलेक्ट्रॉन एक रासायनिक प्रजाति और एक ठोस अवस्था इलेक्ट्रोड के बीच चलता है। विषम इलेक्ट्रॉन स्थानांतरण को संबोधित करने वाले सिद्धांतों का विद्युत्-रसायन और सौर कोशिकाओं के डिजाइन में अनुप्रयोग हैं।

सदिश इलेक्ट्रॉन स्थानांतरण

विशेष रूप से प्रोटीन में, इलेक्ट्रॉन स्थानांतरण में प्रायःएक इलेक्ट्रॉन को एक रेडॉक्स-सक्रिय केंद्र से दूसरे में रोकना सम्मिलित होता है। होपिंग मार्ग, जिसे वेक्टर के रूप में देखा जाता है, एक रोधक परिवेश के भीतर ईटी को मार्गदर्शन और सुविधा प्रदान करता है। विशिष्ट रेडॉक्स केंद्र लौह-सल्फर गुच्छ हैं, उदा 4Fe-4S फेरेडॉक्सिन। इन साइटों को प्रायः7-10 Å से अलग किया जाता है, जो दूरी तेज बाहरी क्षेत्र ET के साथ संगत है।

सिद्धांत

ईटी का पहला सामान्यतः स्वीकृत सिद्धांत रूडोल्फ ए मार्कस द्वारा बाहरी-क्षेत्र इलेक्ट्रॉन स्थानांतरण को संबोधित करने के लिए विकसित किया गया था और यह एक संक्रमण-अवस्था सिद्धांत दृष्टिकोण पर आधारित था। तब इलेक्ट्रॉन स्थानांतरण के मार्कस सिद्धांत को नोएल हशो और मार्कस द्वारा आंतरिक-क्षेत्र इलेक्ट्रॉन स्थानांतरण को सम्मिलितकरने के लिए विस्तारित किया गया था। मार्कस-हश सिद्धांत नामक परिणामी सिद्धांत ने तब से इलेक्ट्रॉन स्थानांतरण की अधिकांश चर्चाओं को निर्देशित किया है। यद्यपि, दोनों सिद्धांत प्रकृति में अर्ध-शास्त्रीय हैं, यद्यपि उन्हें जोशुआ जोर्टनर , अलेक्जेंडर एम कुजनेत्सोव और फर्मी के सुनहरे नियम से आगे बढ़ने वाले और गैर-विकिरण संक्रमणों में पहले के काम के बाद पूरी तरह से क्वांटम यांत्रिक उपचार तक बढ़ा दिया गया है। इसके अतिरिक्त, इलेक्ट्रॉन स्थानांतरण पर वाइब्रोनिक युग्मन के प्रभावों को ध्यान में रखने के लिए सिद्धांतों को सामने रखा गया है; विशेष रूप से, इलेक्ट्रॉन स्थानांतरण का पीकेएस सिद्धांत[4] प्रोटीन में, ET दरें बंध संरचनाओं द्वारा नियंत्रित होती हैं: इलेक्ट्रॉन, वास्तव में, प्रोटीन की श्रृंखला संरचना वाले बंध के माध्यम से सुरंग बनाते हैं।[5]

यह भी देखें


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • कार्बनिक रसायन शास्त्र
  • ऊर्जा के स्तर को कम करना
  • परमैंगनेट
  • सौर सेल
  • गैर-विकिरणकारी संक्रमण
  • बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण
  • आंतरिक क्षेत्र इलेक्ट्रॉन स्थानांतरण
  • सॉल्व्ड इलेक्ट्रान

संदर्भ

  1. Piechota, Eric J.; Meyer, Gerald J. (2019). "इलेक्ट्रॉन स्थानांतरण का परिचय: सैद्धांतिक नींव और शैक्षणिक उदाहरण". Journal of Chemical Education. 96 (11): 2450–2466. Bibcode:2019JChEd..96.2450P. doi:10.1021/acs.jchemed.9b00489. S2CID 208754569.
  2. Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4.
  3. Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.
  4. Susan B. Piepho, Elmars R. Krausz, P. N. Schatz; J. Am. Chem. Soc., 1978, 100 (10), pp 2996–3005; Vibronic coupling model for calculation of mixed-valence absorption profiles; doi:10.1021/ja00478a011; Publication Date: May 1978
  5. Beratan DN, Betts JN, Onuchic JN, Science 31 May 1991: Vol. 252 no. 5010 pp. 1285-1288; Protein electron transfer rates set by the bridging secondary and tertiary structure; doi:10.1126/science.1656523