किर्स्ज़ब्रौन प्रमेय: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 41: | Line 41: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 02/07/2023]] | [[Category:Created On 02/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:18, 11 July 2023
गणित में सामान्यतः वास्तविक विश्लेषण और कार्यात्मक विश्लेषण में किर्स्जब्रौन प्रमेय यह बताता है कि यदि U कुछ हिल्बर्ट स्थान H1 का एक उपसमुच्चय है, और H2 एक अन्य हिल्बर्ट स्थान है,
फिर यह एक लिप्सचिट्ज-निरंतर मानचित्र है
जो f का विस्तार करता है और इसमें f के समान ही लिप्सचिट्ज स्थिरांक है।
ध्यान दें कि यह परिणाम विशेष रूप से यूक्लिडियन रिक्त स्थान En और Em पर लागू होता है, और यह इस रूप में था कि किर्स्जब्रौन ने मूल रूप से प्रमेय तैयार किया और सिद्ध किया।[1] उदाहरण के लिए, हिल्बर्ट रिक्त स्थान का संस्करण (श्वार्ट्ज 1969, पृष्ठ 21) में पाया जा सकता है।[2] यदि H1 एक अलग करने योग्य स्थान है (विशेष रूप से, यदि यह एक यूक्लिडियन स्थान है) तो परिणाम जर्मेलो-फ्रेंकेल समुच्य सिद्धांत में सत्य है; सामान्यतः यह ऐसा प्रतीत होता है कि इसे स्वयंसिद्ध विकल्प के किसी रूप की आवश्यकता है और बूलियन अभाज्य आदर्श प्रमेय को पर्याप्त माना जाता है।[3]
प्रमेय का प्रमाण हिल्बर्ट रिक्त स्थान की ज्यामितीय विशेषताओं का उपयोग करता है; बनच रिक्त स्थान के लिए संबंधित कथन सामान्य रूप से सत्य नहीं है, यहां तक कि परिमित-आयामी बनच रिक्त स्थान के लिए भी नहीं।उदाहरण के लिए, प्रति उदाहरण बनाना संभव है जहां डोमेन अधिकतम मानक के साथ का एक उपसमुच्य है और यूक्लिडियन मानक रखता है।[4] सामान्यतः प्रमेय के किसी आदर्श () (श्वार्ट्ज 1969, पृष्ठ 20) के लिय विफल रहता है।[2]
स्पष्ट सूत्र
-मूल्य वाले फंक्शन के लिए विस्तार द्वारा प्रदान किया जाता है, जहां , U पर का लिप्सचिट्ज स्थिरांक है| [5] सामान्यतः, -मूल्यवान फंक्शन के लिए एक विस्तार के रूप में भी लिखा जा सकता है जहां और conv(g) g का निचला उत्तल आवरण है।[6]
इतिहास
प्रमेय को मोजेज डेविड किर्स्जब्राउन द्वारा सिद्ध किया गया था, और बाद में इसे फ्रेडरिक वैलेंटाइन द्वारा प्रमाणित किया गया था ,[7] जिन्होंने पहली बार इसे यूक्लिडियन सतह के लिए सिद्ध किया था।[8]
कभी-कभी इस प्रमेय को किर्स्जब्रौन-वेलेंटाइन प्रमेय भी कहा जाता है।
संदर्भ
- ↑ Kirszbraun, M. D. (1934). "Über die zusammenziehende und Lipschitzsche Transformationen". Fundamenta Mathematicae. 22: 77–108. doi:10.4064/fm-22-1-77-108.
- ↑ 2.0 2.1 Schwartz, J. T. (1969). अरेखीय कार्यात्मक विश्लेषण. New York: Gordon and Breach Science.
- ↑ Fremlin, D. H. (2011). "किर्स्ज़ब्राउन का प्रमेय" (PDF). Preprint.
- ↑ Federer, H. (1969). ज्यामितीय माप सिद्धांत. Berlin: Springer. p. 202.
- ↑ McShane, E. J. (1934). "कार्यों की सीमा का विस्तार". Bulletin of the American Mathematical Society. 40 (12): 837–842. ISSN 0002-9904.
- ↑ Azagra, Daniel; Le Gruyer, Erwan; Mudarra, Carlos (2021). "Kirszbraun's Theorem via an Explicit Formula". Canadian Mathematical Bulletin (in English). 64 (1): 142–153. doi:10.4153/S0008439520000314. ISSN 0008-4395.
- ↑ Valentine, F. A. (1945). "एक वेक्टर फ़ंक्शन के लिए लिप्सचिट्ज़ कंडीशन प्रिजर्विंग एक्सटेंशन". American Journal of Mathematics. 67 (1): 83–93. doi:10.2307/2371917. JSTOR 2371917.
- ↑ Valentine, F. A. (1943). "एक वेक्टर फ़ंक्शन के विस्तार पर ताकि लिप्सचिट्ज़ स्थिति को संरक्षित किया जा सके". Bulletin of the American Mathematical Society. 49 (2): 100–108. doi:10.1090/s0002-9904-1943-07859-7. MR 0008251.