हेगनर संख्या: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 29: Line 29:
(ध्यान दीजिए कि <math>p-1</math> पैदावार <math>p^2</math>, इसलिए <math>p-2</math> अधिकतम होता है।)
(ध्यान दीजिए कि <math>p-1</math> पैदावार <math>p^2</math>, इसलिए <math>p-2</math> अधिकतम होता है।)


1, 2, और 3 आवश्यक रूप में नहीं होते हैं, अतः हेगनर संख्याएँ जो कार्य करती हैं वह 7, 11, 19, 43, 67, 163 होती हैं, जो 2, 3, 5, 11, 17, के लिए यूलर फॉर्म के प्राइम जनरेटिंग फलन प्रदान करती हैं। इस प्रकार 41, इन बाद वाले नंबरों को फ्रांकोइस ले लियोनिस द्वारा यूलर के भाग्यशाली नंबर कहा जाता है।<ref>Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.</ref>
1, 2, और 3 आवश्यक रूप में नहीं होते हैं, अतः हेगनर संख्याएँ जो कार्य करती हैं वह 7, 11, 19, 43, 67, 163 होती हैं, जो 2, 3, 5, 11, 17, के लिए यूलर फॉर्म के मुख्य उत्पादक फलन प्रदान करती हैं। इस प्रकार 41, इन बाद वाले नंबरों को फ्रांकोइस ले लियोनिस द्वारा यूलर के भाग्यशाली नंबर कहा जाता है।<ref>Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.</ref>
==लगभग पूर्णांक और रामानुजन का स्थिरांक==
==लगभग पूर्णांक और रामानुजन का स्थिरांक==
'''रामानुजन''' '''का स्थिरांक''' [[पारलौकिक संख्या]] है<ref>{{MathWorld|title=Transcendental Number|urlname=TranscendentalNumber}} gives <math>e^{\pi\sqrt{d}}, d \in Z^*</math>, based on
'''रामानुजन''' '''का स्थिरांक''' [[पारलौकिक संख्या]] है<ref>{{MathWorld|title=Transcendental Number|urlname=TranscendentalNumber}} gives <math>e^{\pi\sqrt{d}}, d \in Z^*</math>, based on
Line 56: Line 56:
</ref> गणितीय खेलों के स्तंभकार [[मार्टिन गार्डनर]] ने झूठा प्रामाणित किया था कि संख्या वास्तव में पूर्णांक थी और भारतीय गणितीय प्रतिभा [[श्रीनिवास रामानुजन]] ने इसकी भविष्यवाणी की थी - इसलिए इसका नाम रखा गया था।
</ref> गणितीय खेलों के स्तंभकार [[मार्टिन गार्डनर]] ने झूठा प्रामाणित किया था कि संख्या वास्तव में पूर्णांक थी और भारतीय गणितीय प्रतिभा [[श्रीनिवास रामानुजन]] ने इसकी भविष्यवाणी की थी - इसलिए इसका नाम रखा गया था।


इस संयोग को [[जटिल गुणन]] और j-अपरिवर्तनीय के q-विस्तार द्वारा समझाया गया है।
इस संयोग को [[जटिल गुणन]] और जे-अपरिवर्तनीय के क्यू-विस्तार द्वारा समझाया गया है।


===विस्तार===
===विस्तार===
निम्नलिखित में, j(z) सम्मिश्र संख्या z के j-अपरिवर्तनीय को दर्शाता है। इस प्रकार संक्षेप में, <math>\textstyle j\left(\frac{1+\sqrt{-d}}{2}\right)</math> d हेगनर संख्या के लिए पूर्णांक होता है और
निम्नलिखित में, j(z) सम्मिश्र संख्या z के जे-अपरिवर्तनीय को दर्शाता है। इस प्रकार संक्षेप में, <math>\textstyle j\left(\frac{1+\sqrt{-d}}{2}\right)</math> d हेगनर संख्या के लिए पूर्णांक होता है और
<math display=block>e^{\pi \sqrt{d}} \approx -j\left(\frac{1+\sqrt{-d}}{2}\right) + 744</math>
<math display=block>e^{\pi \sqrt{d}} \approx -j\left(\frac{1+\sqrt{-d}}{2}\right) + 744</math>
क्यू-विस्तार के माध्यम से।
क्यू-विस्तार के माध्यम से।


यदि <math>\tau</math> द्विघात अपरिमेय होता है, तब j-अपरिवर्तनीय डिग्री का [[बीजगणितीय पूर्णांक]] होता है <math>\left|\mathrm{Cl}\bigl(\mathbf{Q}(\tau)\bigr)\right|</math>, [[वर्ग संख्या (संख्या सिद्धांत)]] की <math>\mathbf{Q}(\tau)</math> और जिस न्यूनतम (मोनिक इंटीग्रल) बहुपद को यह संतुष्ट करता है, उसे 'हिल्बर्ट वर्ग बहुपद' कहा जाता है। इस प्रकार यदि काल्पनिक द्विघात विस्तार <math>\mathbf{Q}(\tau)</math> इसकी कक्षा संख्या 1 है (इसलिए d हेगनर संख्या है), j-अपरिवर्तनीय पूर्णांक होता है।
यदि <math>\tau</math> द्विघात अपरिमेय होता है, तब जे-अपरिवर्तनीय डिग्री का [[बीजगणितीय पूर्णांक]] होता है <math>\left|\mathrm{Cl}\bigl(\mathbf{Q}(\tau)\bigr)\right|</math>, [[वर्ग संख्या (संख्या सिद्धांत)]] की <math>\mathbf{Q}(\tau)</math> और जिस न्यूनतम (मोनिक इंटीग्रल) बहुपद को यह संतुष्ट करता है, उसे 'हिल्बर्ट वर्ग बहुपद' कहा जाता है। इस प्रकार यदि काल्पनिक द्विघात विस्तार <math>\mathbf{Q}(\tau)</math> इसकी कक्षा संख्या 1 है (इसलिए d हेगनर संख्या है), जे-अपरिवर्तनीय पूर्णांक होता है।


जे का [[क्यू-विस्तार]], इसके फूरियर श्रृंखला विस्तार के साथ [[लॉरेंट श्रृंखला]] के रूप में लिखा गया है <math>q=e^{2 \pi i \tau}</math>, जो इस प्रकार प्रारंभ होता है।
जे का [[क्यू-विस्तार]], इसके फूरियर श्रृंखला विस्तार के साथ [[लॉरेंट श्रृंखला]] के रूप में लिखा गया है <math>q=e^{2 \pi i \tau}</math>, जो इस प्रकार प्रारंभ होता है।
Line 111: Line 111:
\end{align}
\end{align}
</math>
</math>
जहां वर्गों का कारण कुछ [[आइज़ेंस्टीन श्रृंखला]] के कारण होता है। इस प्रकार हेगनर संख्या के लिए <math>d < 19</math>, किसी को लगभग पूर्णांक प्राप्त नहीं होता है। यहां तक ​​की <math>d = 19</math> उल्लेखनीय नहीं होता है,<ref>The absolute deviation of a random real number (picked uniformly from [[unit interval|{{closed-closed|0,1|size=120%}}]], say) is a uniformly distributed variable on {{closed-closed|0, 0.5|size=120%}}, so it has [[absolute average deviation]] and [[median absolute deviation]] of 0.25, and a deviation of 0.22 is not exceptional.</ref> अतः पूर्णांक j-अपरिवर्तनीय अत्यधिक गुणनखंडन योग्य हैं, जो प्रपत्र से अनुसरण करता है।
जहां वर्गों का कारण कुछ [[आइज़ेंस्टीन श्रृंखला]] के कारण होता है। इस प्रकार हेगनर संख्या के लिए <math>d < 19</math>, किसी को लगभग पूर्णांक प्राप्त नहीं होता है। यहां तक ​​की <math>d = 19</math> उल्लेखनीय नहीं होता है,<ref>The absolute deviation of a random real number (picked uniformly from [[unit interval|{{closed-closed|0,1|size=120%}}]], say) is a uniformly distributed variable on {{closed-closed|0, 0.5|size=120%}}, so it has [[absolute average deviation]] and [[median absolute deviation]] of 0.25, and a deviation of 0.22 is not exceptional.</ref> अतः पूर्णांक जे-अपरिवर्तनीय अत्यधिक गुणनखंडन योग्य हैं, जो प्रपत्र से अनुसरण करता है।
:<math display=block>12^3\left(n^2-1\right)^3=\left(2^2\cdot 3 \cdot (n-1) \cdot (n+1)\right)^3,</math>
:<math display=block>12^3\left(n^2-1\right)^3=\left(2^2\cdot 3 \cdot (n-1) \cdot (n+1)\right)^3,</math>
और कारक के रूप में,
और कारक के रूप में,
Line 121: Line 121:
\end{align}
\end{align}
</math>
</math>
यह [[पारलौकिक संख्याएँ]], पूर्णांकों (जो केवल डिग्री 1 की बीजीय संख्याएँ होती हैं) द्वारा बारीकी से अनुमानित होने के अतिरिक्त, डिग्री 3 की बीजगणितीय संख्याओं द्वारा बारीकी से अनुमानित की जा सकती हैं।<ref>{{cite web|url=http://sites.google.com/site/tpiezas/001|title=Pi Formulas}}</ref>
यह [[पारलौकिक संख्याएँ]], पूर्णांकों (जो केवल डिग्री 1 की बीजीय संख्याएँ होती हैं) द्वारा सूक्ष्मता से अनुमानित होने के अतिरिक्त, डिग्री 3 की बीजगणितीय संख्याओं द्वारा सूक्ष्मता से अनुमानित की जा सकती हैं।<ref>{{cite web|url=http://sites.google.com/site/tpiezas/001|title=Pi Formulas}}</ref>
<math display=block>\begin{align}
<math display=block>\begin{align}
e^{\pi \sqrt{19}}  &\approx x^{24}-24.000\,31 ; & x^3-2x-2&=0\\
e^{\pi \sqrt{19}}  &\approx x^{24}-24.000\,31 ; & x^3-2x-2&=0\\
Line 129: Line 129:
\end{align}
\end{align}
</math>
</math>
क्यूबिक्स के फलन का मूल बिल्कुल [[डेडेकाइंड और फ़ंक्शन|डेडेकाइंड और फलन]] η(τ) के भागफल द्वारा दिया जा सकता है, अतः मॉड्यूलर फलन जिसमें 24वां रूट सम्मिलित होता है और जो सन्निकटन में 24 की व्याख्या करता है। इस प्रकार उन्हें घात 4 की बीजगणितीय संख्याओं द्वारा भी बारीकी से अनुमानित किया जा सकता है।<ref>{{cite web|url=http://sites.google.com/site/tpiezas/ramanujan|title=Extending Ramanujan's Dedekind Eta Quotients}}</ref>
क्यूबिक्स के फलन का मूल बिल्कुल [[डेडेकाइंड और फ़ंक्शन|डेडेकाइंड और फलन]] η(τ) के भागफल द्वारा दिया जा सकता है, अतः मॉड्यूलर फलन जिसमें 24वां मार्ग सम्मिलित होता है और जो सन्निकटन में 24 की व्याख्या करता है। इस प्रकार उन्हें घात 4 की बीजगणितीय संख्याओं द्वारा भी सूक्ष्मता से अनुमानित किया जा सकता है।<ref>{{cite web|url=http://sites.google.com/site/tpiezas/ramanujan|title=Extending Ramanujan's Dedekind Eta Quotients}}</ref>
<math display=block>\begin{align}
<math display=block>\begin{align}
e^{\pi \sqrt{19}}  &\approx 3^5 \left(3-\sqrt{2\left(1- \tfrac{96}{24}+1\sqrt{3\cdot19}\right)} \right)^{-2}-12.000\,06\dots\\
e^{\pi \sqrt{19}}  &\approx 3^5 \left(3-\sqrt{2\left(1- \tfrac{96}{24}+1\sqrt{3\cdot19}\right)} \right)^{-2}-12.000\,06\dots\\
Line 152: Line 152:
\end{align}
\end{align}
</math>
</math>




Line 197: Line 198:
</math>
</math>
==लगातार अभाज्य==
==लगातार अभाज्य==
यदि कोई गणना करता है, तब उसे विषम अभाज्य p दिया गया है <math>k^2 \mod p</math> के लिए <math>\textstyle k=0,1,\dots,\frac{p-1}{2}</math> (यह पर्याप्त होता है जिससे कि <math>\left(p-k\right)^2\equiv k^2\mod p</math>), किसी को लगातार कंपोजिट मिलता है, उसके बाद लगातार अभाज्य संख्याएं मिलती हैं और यदि पी हेगनर संख्या ह्प्ती है।<ref>{{Cite web|url=http://www.mathpages.com/home/kmath263.htm|title=Simple Complex Quadratic Fields}}</ref>
यदि कोई गणना करता है, तब उसे विषम अभाज्य p दिया गया है <math>k^2 \mod p</math> के लिए <math>\textstyle k=0,1,\dots,\frac{p-1}{2}</math> (यह पर्याप्त होता है जिससे कि <math>\left(p-k\right)^2\equiv k^2\mod p</math>), किसी को लगातार संयुक्त मिलता है, उसके बाद लगातार अभाज्य संख्याएं मिलती हैं और यदि पी हेगनर संख्या होती है।<ref>{{Cite web|url=http://www.mathpages.com/home/kmath263.htm|title=Simple Complex Quadratic Fields}}</ref>


विवरण के लिए, [[रिचर्ड मोलिन]] द्वारा लिखित द्विघात बहुपद, जो लगातार विशिष्ट अभाज्य और जटिल द्विघात क्षेत्रों के वर्ग समूहों का निर्माण करते हैं, देखें।<ref>{{cite journal|author=Mollin, R. A.|title=द्विघात बहुपद, जटिल द्विघात क्षेत्रों के क्रमागत, विशिष्ट अभाज्य और वर्ग समूहों का निर्माण करते हैं|journal=Acta Arithmetica|volume=74|year=1996|pages=17–30|doi=10.4064/aa-74-1-17-30|url=http://matwbn.icm.edu.pl/ksiazki/aa/aa74/aa7412.pdf}}</ref>
विवरण के लिए, [[रिचर्ड मोलिन]] द्वारा लिखित द्विघात बहुपद, जो लगातार विशिष्ट अभाज्य और जटिल द्विघात क्षेत्रों के वर्ग समूहों का निर्माण करते हैं, देख सकते है।<ref>{{cite journal|author=Mollin, R. A.|title=द्विघात बहुपद, जटिल द्विघात क्षेत्रों के क्रमागत, विशिष्ट अभाज्य और वर्ग समूहों का निर्माण करते हैं|journal=Acta Arithmetica|volume=74|year=1996|pages=17–30|doi=10.4064/aa-74-1-17-30|url=http://matwbn.icm.edu.pl/ksiazki/aa/aa74/aa7412.pdf}}</ref>
==नोट्स और संदर्भ==
==नोट्स और संदर्भ==
{{reflist}}
{{reflist}}

Revision as of 13:42, 6 July 2023

संख्या सिद्धांत में, हेगनर संख्या (जैसा कि जॉन हॉर्टन कॉनवे और गाइ द्वारा कहा गया है) वर्ग-मुक्त धनात्मक पूर्णांक d इस प्रकार होता है कि काल्पनिक द्विघात क्षेत्र का आदर्श वर्ग समूह 1 होता है। सामान्यतः, बीजगणितीयम पूर्णांकों का वलय में अद्वितीय गुणनखंडन होता है।[1]

ऐसी संख्याओं का निर्धारण वर्ग संख्या समस्या की विशेष स्थिति होती है और वह संख्या सिद्धांत में अनेक आश्चर्यजनक परिणामों का आधार हैं।

(बेकर-) स्टार्क-हीगनर प्रमेय के अनुसार, वास्तव में नौ हीगनर संख्याएँ होती हैं।

1, 2, 3, 7, 11, 19, 43, 67, and 163. (sequence A003173 in the OEIS)

इस परिणाम का अनुमान कार्ल फ्रेडरिक गॉस द्वारा लगाया गया था और सन्न 1952 में कर्ट हेगनर द्वारा इसे छोटी खामियों तक सिद्ध किया गया था। इस प्रकार एलन बेकर (गणितज्ञ) और हेरोल्ड स्टार्क ने सन्न 1966 में स्वतंत्र रूप से परिणाम को सिद्ध किया था और स्टार्क ने आगे संकेत दिया था कि हेगनर के प्रमाण में अंतर साधारण होता था।[2]

यूलर का अभाज्य-जनक बहुपद

अभाज्यों के लिए यूलर काअभाज्य-जनक बहुपद

जो n = 0, ..., 39 के लिए (विशिष्ट) अभाज्य संख्या देता है, अतः हेगनर संख्या 163 = 4 · 41 − 1 से संबंधित होता है।

जॉर्ज यूरी रेनिच[3] ने यह सिद्ध कर दिया था कि

इसके लिए अभाज्य अंक देता है और यदि यह द्विघात विभेदक होता है जो हेगनर संख्या का ऋणात्मक होता है।

(ध्यान दीजिए कि पैदावार , इसलिए अधिकतम होता है।)

1, 2, और 3 आवश्यक रूप में नहीं होते हैं, अतः हेगनर संख्याएँ जो कार्य करती हैं वह 7, 11, 19, 43, 67, 163 होती हैं, जो 2, 3, 5, 11, 17, के लिए यूलर फॉर्म के मुख्य उत्पादक फलन प्रदान करती हैं। इस प्रकार 41, इन बाद वाले नंबरों को फ्रांकोइस ले लियोनिस द्वारा यूलर के भाग्यशाली नंबर कहा जाता है।[4]

लगभग पूर्णांक और रामानुजन का स्थिरांक

रामानुजन का स्थिरांक पारलौकिक संख्या है[5] , जो लगभग पूर्णांक होता है, इसमें यह गणितीय संयोग है कि पूर्णांक में पाई या ई और संख्या 163 सम्मिलित होती है।[6]

इस संख्या की खोज सन्न 1859 में गणितज्ञ चार्ल्स हर्मिट ने की थी।[7] अमेरिकी वैज्ञानिक पत्रिका में सन्न 1975 के अप्रैल फूल दिवस लेख में,[8] गणितीय खेलों के स्तंभकार मार्टिन गार्डनर ने झूठा प्रामाणित किया था कि संख्या वास्तव में पूर्णांक थी और भारतीय गणितीय प्रतिभा श्रीनिवास रामानुजन ने इसकी भविष्यवाणी की थी - इसलिए इसका नाम रखा गया था।

इस संयोग को जटिल गुणन और जे-अपरिवर्तनीय के क्यू-विस्तार द्वारा समझाया गया है।

विस्तार

निम्नलिखित में, j(z) सम्मिश्र संख्या z के जे-अपरिवर्तनीय को दर्शाता है। इस प्रकार संक्षेप में, d हेगनर संख्या के लिए पूर्णांक होता है और

क्यू-विस्तार के माध्यम से।

यदि द्विघात अपरिमेय होता है, तब जे-अपरिवर्तनीय डिग्री का बीजगणितीय पूर्णांक होता है , वर्ग संख्या (संख्या सिद्धांत) की और जिस न्यूनतम (मोनिक इंटीग्रल) बहुपद को यह संतुष्ट करता है, उसे 'हिल्बर्ट वर्ग बहुपद' कहा जाता है। इस प्रकार यदि काल्पनिक द्विघात विस्तार इसकी कक्षा संख्या 1 है (इसलिए d हेगनर संख्या है), जे-अपरिवर्तनीय पूर्णांक होता है।

जे का क्यू-विस्तार, इसके फूरियर श्रृंखला विस्तार के साथ लॉरेंट श्रृंखला के रूप में लिखा गया है , जो इस प्रकार प्रारंभ होता है।

गुणांक स्पर्शोन्मुख रूप से से बढ़ता है।
और निम्न क्रम गुणांक अधिक धीरे-धीरे बढ़ते हैं , अभीतक के लिए तब , j को इसके पहले दो पदों द्वारा बहुत अच्छी प्रकार से अनुमानित किया गया है। इस प्रकार सेटिंग पैप्रामाणितर,
अब,
इसलिए,
या
जहां त्रुटि का रैखिक पद होता है।
क्यों समझा रहा हूँ पूर्णांक होने के लगभग ऊपर के अंदर होता है।

पाई सूत्र

चुडनोव्स्की बंधुओं ने सन्न 1987 में इसकी खोज की थी।

जिसका प्रमाण इस तथ्य का उपयोग करता है।
समान सूत्रों के लिए, रामानुजन-सातो श्रृंखला देखें।

अन्य हेगनर संख्याएँ

सामान्यतः चार सबसे बड़ी हेगनर संख्याओं के लिए, जो सन्निकटन प्राप्त होता है[9] निम्नानुसार हैं।

वैकल्पिक रूप से,[10]
जहां वर्गों का कारण कुछ आइज़ेंस्टीन श्रृंखला के कारण होता है। इस प्रकार हेगनर संख्या के लिए , किसी को लगभग पूर्णांक प्राप्त नहीं होता है। यहां तक ​​की उल्लेखनीय नहीं होता है,[11] अतः पूर्णांक जे-अपरिवर्तनीय अत्यधिक गुणनखंडन योग्य हैं, जो प्रपत्र से अनुसरण करता है।

और कारक के रूप में,

यह पारलौकिक संख्याएँ, पूर्णांकों (जो केवल डिग्री 1 की बीजीय संख्याएँ होती हैं) द्वारा सूक्ष्मता से अनुमानित होने के अतिरिक्त, डिग्री 3 की बीजगणितीय संख्याओं द्वारा सूक्ष्मता से अनुमानित की जा सकती हैं।[12]
क्यूबिक्स के फलन का मूल बिल्कुल डेडेकाइंड और फलन η(τ) के भागफल द्वारा दिया जा सकता है, अतः मॉड्यूलर फलन जिसमें 24वां मार्ग सम्मिलित होता है और जो सन्निकटन में 24 की व्याख्या करता है। इस प्रकार उन्हें घात 4 की बीजगणितीय संख्याओं द्वारा भी सूक्ष्मता से अनुमानित किया जा सकता है।[13]
यदि कोष्ठक के अंदर अभिव्यक्ति को दर्शाता है (उदा. ), यह क्रमशः चतुर्थक समीकरण को संतुष्ट करता है।
पूर्णांकों के पुनः प्रकटन पर ध्यान दीजिए कि साथ ही यह तथ्य भी,


जो उचित भिन्नात्मक शक्ति के साथ, त्रुटिहीन रूप से जे-अपरिवर्तनीय होता हैं।

इसी प्रकार घात 6 की बीजगणितीय संख्याओं के लिए,

जहां एक्सएस क्रमशः सेक्सटिक समीकरणों की उचित जड़ द्वारा दिए गए हैं।
जे-इनवेरिएंट के फिर से प्रकट होने के साथ यह सेक्स्टिक्स न केवल बीजगणितीय होते हैं, अतः वह nवें मूल में हल करने योग्य समूह भी होता हैं, जिससे कि वह विस्तार पर दो घन समीकरण में कारक होता हैं (पहले गुणनखंडन के साथ आगे दो द्विघात समीकरण में)। इन बीजगणितीय सन्निकटनों को डेडेकाइंड ईटा भागफल के रूप में त्रुटिहीन रूप से व्यक्त किया जा सकता है। उदाहरण के तौर पर, आइए , तब,
जहां ईटा भागफल ऊपर दी गई बीजगणितीय संख्याएं होती हैं।

कक्षा 2 संख्या

तीन संख्याएँ 88, 148, 232, जिसके लिए काल्पनिक द्विघात क्षेत्र आदर्श वर्ग समूह 2 होता है, अतः हेगनर संख्याएं नहीं होती हैं किन्तु लगभग पूर्णांकों के संदर्भ में कुछ समान गुण होते हैं। उदाहरण के लिए,

और

लगातार अभाज्य

यदि कोई गणना करता है, तब उसे विषम अभाज्य p दिया गया है के लिए (यह पर्याप्त होता है जिससे कि ), किसी को लगातार संयुक्त मिलता है, उसके बाद लगातार अभाज्य संख्याएं मिलती हैं और यदि पी हेगनर संख्या होती है।[14]

विवरण के लिए, रिचर्ड मोलिन द्वारा लिखित द्विघात बहुपद, जो लगातार विशिष्ट अभाज्य और जटिल द्विघात क्षेत्रों के वर्ग समूहों का निर्माण करते हैं, देख सकते है।[15]

नोट्स और संदर्भ

  1. Conway, John Horton; Guy, Richard K. (1996). The Book of Numbers. Springer. p. 224. ISBN 0-387-97993-X.
  2. Stark, H. M. (1969), "On the gap in the theorem of Heegner" (PDF), Journal of Number Theory, 1 (1): 16–27, Bibcode:1969JNT.....1...16S, doi:10.1016/0022-314X(69)90023-7, hdl:2027.42/33039
  3. Rabinovitch, Georg "Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern." Proc. Fifth Internat. Congress Math. ( Cambridge) 1, 418–421, 1913.
  4. Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.
  5. Weisstein, Eric W. "Transcendental Number". MathWorld. gives , based on Nesterenko, Yu. V. "On Algebraic Independence of the Components of Solutions of a System of Linear Differential Equations." Izv. Akad. Nauk SSSR, Ser. Mat. 38, 495–512, 1974. English translation in Math. USSR 8, 501–518, 1974.
  6. Ramanujan Constant – from Wolfram MathWorld
  7. Barrow, John D (2002). The Constants of Nature. London: Jonathan Cape. ISBN 0-224-06135-6.
  8. Gardner, Martin (April 1975). "Mathematical Games". Scientific American. Scientific American, Inc. 232 (4): 127. Bibcode:1975SciAm.232e.102G. doi:10.1038/scientificamerican0575-102.
  9. These can be checked by computing
    on a calculator, and
    for the linear term of the error.
  10. "More on e^(pi*SQRT(163))".
  11. The absolute deviation of a random real number (picked uniformly from [[unit interval|[0,1]]], say) is a uniformly distributed variable on [0, 0.5], so it has absolute average deviation and median absolute deviation of 0.25, and a deviation of 0.22 is not exceptional.
  12. "Pi Formulas".
  13. "Extending Ramanujan's Dedekind Eta Quotients".
  14. "Simple Complex Quadratic Fields".
  15. Mollin, R. A. (1996). "द्विघात बहुपद, जटिल द्विघात क्षेत्रों के क्रमागत, विशिष्ट अभाज्य और वर्ग समूहों का निर्माण करते हैं" (PDF). Acta Arithmetica. 74: 17–30. doi:10.4064/aa-74-1-17-30.

बाहरी संबंध