चंकिंग (विभाजन): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Division method}}
{{Short description|Division method}}
प्राथमिक विद्यालय स्तर पर गणित की शिक्षा में बार-बार [[घटाव]] द्वारा सरल विभाजन (गणित) प्रश्नों को हल करने के लिए चंकिंग (कभी-कभी आंशिक भागफल विधि भी कहा जाता है) एक प्रारंभिक दृष्टिकोण होता है। इसे भाजक लाभांश और आंशिक भागफल को अलग करने वाली रेखा जोड़ने के साथ जल्लाद विधि के रूप में भी जाना जाता है।<ref>{{Cite web|url=https://www.youtube.com/watch?v=5DaS1gYEYXs|title = जल्लाद प्रभाग (आंशिक उद्धरण)|website = [[YouTube]]}}</ref> गुणन के लिए [[ग्रिड विधि]] में भी इसका एक समकक्ष है।
प्राथमिक विद्यालय स्तर पर गणित की शिक्षा में बार-बार [[घटाव]] द्वारा सरल विभाजन (गणित) प्रश्नों को हल करने के लिए '''चंकिंग''' (कभी-कभी आंशिक भागफल विधि भी कहा जाता है) एक प्रारंभिक दृष्टिकोण होता है। इसे भाजक लाभांश और आंशिक भागफल को अलग करने वाली रेखा जोड़ने के साथ हैंगमैन  विधि के रूप में भी जाना जाता है।<ref>{{Cite web|url=https://www.youtube.com/watch?v=5DaS1gYEYXs|title = जल्लाद प्रभाग (आंशिक उद्धरण)|website = [[YouTube]]}}</ref> गुणन के लिए [[ग्रिड विधि]] में भी इसका एक समकक्ष है।


सामान्यतः चंकिंग पारंपरिक पद्धति की तुलना में अधिक लचीली होती है जिसमें भागफल की गणना स्थानीय मानों पर कम निर्भर होती है। परिणामस्वरूप इसे अधिकांशतः विभाजनों के लिए अधिक सहज किन्तु कम व्यवस्थित दृष्टिकोण माना जाता है{{spnd}}जहां दक्षता किसी के संख्यात्मक कौशल पर अत्यधिक निर्भर करती है।
सामान्यतः चंकिंग पारंपरिक पद्धति की तुलना में अधिक लचीली होती है जिसमें भागफल की गणना स्थानीय मानों पर कम निर्भर होती है। परिणामस्वरूप इसे अधिकांशतः विभाजनों के लिए अधिक सहज किन्तु कम व्यवस्थित दृष्टिकोण माना जाता है{{spnd}}जहां दक्षता किसी के संख्यात्मक कौशल पर अत्यधिक निर्भर करती है।
Line 23: Line 23:
क्योंकि 10 + 5 + 1 = 16, 132 {{math| ÷ }} 8, 16 है और 4 शेष है।
क्योंकि 10 + 5 + 1 = 16, 132 {{math| ÷ }} 8, 16 है और 4 शेष है।


यूके में, प्रारंभिक विभाजन के योगों के लिए यह दृष्टिकोण 1990 के दशक के उत्तरार्ध से प्राथमिक विद्यालयों में व्यापक कक्षा उपयोग में आया है जब [[राष्ट्रीय संख्यात्मक रणनीति]] ने अपने संख्यात्मक घंटे में गणना के लिए अधिक मुक्त-रूप मौखिक और मानसिक रणनीतियों पर नया जोर दिया मानक विधियों को रटने के बजाय।<ref>Gary Eason, [http://news.bbc.co.uk/1/hi/education/639937.stm Back to school for parents], ''BBC News'', 13 February 2000.</ref> परंपरागत रूप से सिखाई जाने वाली छोटी विभाजन और लंबी विभाजन विधियों की तुलना में टुकड़े करना अजीब, अव्यवस्थित और मनमाना लग सकता है। चूँकि , यह तर्क दिया जाता है कि छोटे विभाजन की ओर सीधे जाने के बजाय खंडन विभाजन का बेहतर परिचय देता है आंशिक रूप से क्योंकि फोकस हमेशा समग्र होता है लगातार अंकों को उत्पन्न करने के नियमों के बजाय पूरी गणना और उसके अर्थ पर ध्यान केंद्रित करता है। चंकिंग की अधिक मुक्त रूप प्रकृति का यह भी अर्थ है कि इसके लिए अधिक वास्तविक समझ की आवश्यकता है{{spnd}}सिर्फ अनुष्ठानिक प्रक्रिया का पालन करने की क्षमता के बजाय सफल होने के लिए।<ref>Anne Campbell, Gavin Fairbairn, ''Working with support in the classroom'', SAGE, 2005; pp. [https://books.google.com/books?id=-v7jeLBjzTMC&pg=PA59 59&ndash;60] via Google books</ref>
यूके में, प्रारंभिक विभाजन के योगों के लिए यह दृष्टिकोण 1990 के दशक के उत्तरार्ध से प्राथमिक विद्यालयों में व्यापक कक्षा उपयोग में आया है जब [[राष्ट्रीय संख्यात्मक रणनीति]] ने अपने संख्यात्मक घंटे में गणना के लिए अधिक मुक्त-रूप मौखिक और मानसिक रणनीतियों पर नया जोर दिया मानक विधियों को रटने के अतिरिक्त ।<ref>Gary Eason, [http://news.bbc.co.uk/1/hi/education/639937.stm Back to school for parents], ''BBC News'', 13 February 2000.</ref> परंपरागत रूप से सिखाई जाने वाली छोटी विभाजन और लंबी विभाजन विधियों की तुलना में टुकड़े करना अजीब, अव्यवस्थित और इच्छानुसार लग सकता है। चूँकि , यह तर्क दिया जाता है कि छोटे विभाजन की ओर सीधे जाने के अतिरिक्त खंडन विभाजन का उत्तम परिचय देता है आंशिक रूप से क्योंकि फोकस हमेशा समग्र होता है लगातार अंकों को उत्पन्न करने के नियमों के अतिरिक्त पूरी गणना और उसके अर्थ पर ध्यान केंद्रित करता है। चंकिंग की अधिक मुक्त रूप प्रकृति का यह भी अर्थ है कि इसे सफल होने के लिए अधिक वास्तविक समझ की आवश्यकता है - न कि केवल एक अनुष्ठानिक प्रक्रिया का पालन करने की क्षमता है <ref>Anne Campbell, Gavin Fairbairn, ''Working with support in the classroom'', SAGE, 2005; pp. [https://books.google.com/books?id=-v7jeLBjzTMC&pg=PA59 59&ndash;60] via Google books</ref>


चंकिंग करने के एक वैकल्पिक विधि में मानक लंबी विभाजन झांकी का उपयोग सम्मिलित होते है{{spnd}}सिवाय इसके कि आंशिक भागफल लंबे विभाजन चिह्न के ऊपर एक-दूसरे के ऊपर रखे गए हैं और सभी संख्याएँ पूर्ण रूप से लिखी गई हैं। किसी को वर्तमान में उपस्थित टुकड़ों की तुलना में अधिक टुकड़े घटाने की अनुमति देकर टुकड़ों को पूरी तरह से द्विदिश विधि में विस्तारित करना भी संभव है।
चंकिंग करने के एक वैकल्पिक विधि में मानक लंबी विभाजन झांकी का उपयोग सम्मिलित होते है{{spnd}}अतिरिक्त इसके कि आंशिक भागफल लंबे विभाजन चिह्न के ऊपर एक-दूसरे के ऊपर रखे गए हैं और सभी संख्याएँ पूर्ण रूप से लिखी गई हैं। किसी को वर्तमान में उपस्थित टुकड़ों की तुलना में अधिक टुकड़े घटाने की अनुमति देकर टुकड़ों को पूरी तरह से द्विदिश विधि में विस्तारित करना भी संभव है।


== संदर्भ ==
== संदर्भ                                                                                         ==
{{reflist}}
{{reflist}}



Revision as of 20:47, 7 July 2023

प्राथमिक विद्यालय स्तर पर गणित की शिक्षा में बार-बार घटाव द्वारा सरल विभाजन (गणित) प्रश्नों को हल करने के लिए चंकिंग (कभी-कभी आंशिक भागफल विधि भी कहा जाता है) एक प्रारंभिक दृष्टिकोण होता है। इसे भाजक लाभांश और आंशिक भागफल को अलग करने वाली रेखा जोड़ने के साथ हैंगमैन विधि के रूप में भी जाना जाता है।[1] गुणन के लिए ग्रिड विधि में भी इसका एक समकक्ष है।

सामान्यतः चंकिंग पारंपरिक पद्धति की तुलना में अधिक लचीली होती है जिसमें भागफल की गणना स्थानीय मानों पर कम निर्भर होती है। परिणामस्वरूप इसे अधिकांशतः विभाजनों के लिए अधिक सहज किन्तु कम व्यवस्थित दृष्टिकोण माना जाता है – जहां दक्षता किसी के संख्यात्मक कौशल पर अत्यधिक निर्भर करती है।

किसी बड़ी संख्या को छोटी संख्या से विभाजित करने के प्राकृतिक संख्या भागफल की गणना करने के लिए छात्र बार-बार बड़ी संख्या के खंडों को निकाला जाता है जहां प्रत्येक भाग आसान गुणज होता है (उदाहरण के लिए 100×, 10×, 5× 2×, आदि) छोटी संख्या का जब तक कि बड़ी संख्या शून्य न हो जाए – या शेषफल छोटी संख्या से भी कम होती है और साथ ही छात्र अब तक हटाई गई छोटी संख्या के गुणजों (अर्थात आंशिक भागफल) की सूची तैयार कर रहा है जिसे एक साथ जोड़ने पर पूर्ण संख्या भागफल बन जाएगा।

उदाहरण के लिए 132 की गणना करने के लिए ÷ 8, कोई 4 छोड़ने के लिए 80, 40 और 8 को क्रमिक रूप से घटा सकता है:

 132
 80 (10 × 8)
 --
 52
 40 (5×8)
 --
 12
 8 (1×8)
 --
 4
 --------
 132 = 16 × 8 + 4

क्योंकि 10 + 5 + 1 = 16, 132 ÷ 8, 16 है और 4 शेष है।

यूके में, प्रारंभिक विभाजन के योगों के लिए यह दृष्टिकोण 1990 के दशक के उत्तरार्ध से प्राथमिक विद्यालयों में व्यापक कक्षा उपयोग में आया है जब राष्ट्रीय संख्यात्मक रणनीति ने अपने संख्यात्मक घंटे में गणना के लिए अधिक मुक्त-रूप मौखिक और मानसिक रणनीतियों पर नया जोर दिया मानक विधियों को रटने के अतिरिक्त ।[2] परंपरागत रूप से सिखाई जाने वाली छोटी विभाजन और लंबी विभाजन विधियों की तुलना में टुकड़े करना अजीब, अव्यवस्थित और इच्छानुसार लग सकता है। चूँकि , यह तर्क दिया जाता है कि छोटे विभाजन की ओर सीधे जाने के अतिरिक्त खंडन विभाजन का उत्तम परिचय देता है आंशिक रूप से क्योंकि फोकस हमेशा समग्र होता है लगातार अंकों को उत्पन्न करने के नियमों के अतिरिक्त पूरी गणना और उसके अर्थ पर ध्यान केंद्रित करता है। चंकिंग की अधिक मुक्त रूप प्रकृति का यह भी अर्थ है कि इसे सफल होने के लिए अधिक वास्तविक समझ की आवश्यकता है - न कि केवल एक अनुष्ठानिक प्रक्रिया का पालन करने की क्षमता है [3]

चंकिंग करने के एक वैकल्पिक विधि में मानक लंबी विभाजन झांकी का उपयोग सम्मिलित होते है – अतिरिक्त इसके कि आंशिक भागफल लंबे विभाजन चिह्न के ऊपर एक-दूसरे के ऊपर रखे गए हैं और सभी संख्याएँ पूर्ण रूप से लिखी गई हैं। किसी को वर्तमान में उपस्थित टुकड़ों की तुलना में अधिक टुकड़े घटाने की अनुमति देकर टुकड़ों को पूरी तरह से द्विदिश विधि में विस्तारित करना भी संभव है।

संदर्भ

  1. "जल्लाद प्रभाग (आंशिक उद्धरण)". YouTube.
  2. Gary Eason, Back to school for parents, BBC News, 13 February 2000.
  3. Anne Campbell, Gavin Fairbairn, Working with support in the classroom, SAGE, 2005; pp. 59–60 via Google books


अग्रिम पठन