स्यूडोस्केलर: Difference between revisions

From Vigyanwiki
No edit summary
Line 13: Line 13:
भौतिकी में सबसे प्रभावशाली सिद्धांतों में से एक यह है कि जब कोई इन नियमों का वर्णन करने के लिए उपयोग की जाने वाली निर्देशांक पद्धति को बदलता है तो भौतिक नियम नहीं बदलते हैं। जब निर्देशांक अक्ष उत्क्रमित होते हैं तो एक छद्म अदिश अपने चिन्ह को व्युत्क्रमित कर देता है, यह बताता है कि यह भौतिक राशि का वर्णन करने के लिए सबसे अच्छी वस्तु नहीं है। 3डी-स्पेस में, छद्म सदिश द्वारा वर्णित राशियाँ अनुक्रम 2 की [[एंटीसिमेट्रिक टेंसर|प्रतिसममित]] प्रदिश हैं, जो व्युत्क्रमण के अंतर्गत निश्चर हैं। छद्म सदिश उस राशि का एक सरल निरूपण हो सकता है, लेकिन व्युत्क्रम के अंतर्गत चिहन के परिवर्तन से सफ़र्न है। इसी प्रकार, 3डी-स्पेस में, एक अदिश का [[ हॉज दोहरे |हॉज द्विक]] 3-विमीय [[लेवी-सिविटा प्रतीक|लेवी-सिविटा]] छद्म प्रदिश (या "क्रमचय" छद्म प्रदिश) के नियत समय के बराबर होता है; जबकि छद्म अदिश का हॉज द्विक अनुक्रम तीन का एक प्रतिसममित (स्पष्ट) प्रदिश है। लेवी-सिविटा छद्म प्रदिश  अनुक्रम 3 का पूर्ण प्रकार से [[प्रतिसममित]] छद्म प्रदिश है। चूंकि छद्म अदिश का द्वैत दो "छद्म-राशियों" का गुणनफल है, परिणामी प्रदिश एक वास्तविक प्रदिश है, और अक्षों के व्युत्क्रमण पर चिहन नहीं बदलता है। छद्म सदिश का द्विक अनुक्रम 2 (और इसके विपर्येण) का प्रतिसममित प्रदिश है। निर्देशांक व्युत्क्रम के अंतर्गत प्रदिश एक निश्चर भौतिक राशि है, जबकि छद्म सदिश निश्चर नहीं है।
भौतिकी में सबसे प्रभावशाली सिद्धांतों में से एक यह है कि जब कोई इन नियमों का वर्णन करने के लिए उपयोग की जाने वाली निर्देशांक पद्धति को बदलता है तो भौतिक नियम नहीं बदलते हैं। जब निर्देशांक अक्ष उत्क्रमित होते हैं तो एक छद्म अदिश अपने चिन्ह को व्युत्क्रमित कर देता है, यह बताता है कि यह भौतिक राशि का वर्णन करने के लिए सबसे अच्छी वस्तु नहीं है। 3डी-स्पेस में, छद्म सदिश द्वारा वर्णित राशियाँ अनुक्रम 2 की [[एंटीसिमेट्रिक टेंसर|प्रतिसममित]] प्रदिश हैं, जो व्युत्क्रमण के अंतर्गत निश्चर हैं। छद्म सदिश उस राशि का एक सरल निरूपण हो सकता है, लेकिन व्युत्क्रम के अंतर्गत चिहन के परिवर्तन से सफ़र्न है। इसी प्रकार, 3डी-स्पेस में, एक अदिश का [[ हॉज दोहरे |हॉज द्विक]] 3-विमीय [[लेवी-सिविटा प्रतीक|लेवी-सिविटा]] छद्म प्रदिश (या "क्रमचय" छद्म प्रदिश) के नियत समय के बराबर होता है; जबकि छद्म अदिश का हॉज द्विक अनुक्रम तीन का एक प्रतिसममित (स्पष्ट) प्रदिश है। लेवी-सिविटा छद्म प्रदिश  अनुक्रम 3 का पूर्ण प्रकार से [[प्रतिसममित]] छद्म प्रदिश है। चूंकि छद्म अदिश का द्वैत दो "छद्म-राशियों" का गुणनफल है, परिणामी प्रदिश एक वास्तविक प्रदिश है, और अक्षों के व्युत्क्रमण पर चिहन नहीं बदलता है। छद्म सदिश का द्विक अनुक्रम 2 (और इसके विपर्येण) का प्रतिसममित प्रदिश है। निर्देशांक व्युत्क्रम के अंतर्गत प्रदिश एक निश्चर भौतिक राशि है, जबकि छद्म सदिश निश्चर नहीं है।


स्थिति को किसी भी आयाम तक बढ़ाया जा सकता है। आम तौर पर एन-डायमेंशनल स्पेस में ऑर्डर आर टेंसर का हॉज डुअल ऑर्डर का एक एंटी-सिमेट्रिक स्यूडोटेंसर होगा {{nowrap|(''n'' ''r'')}} और इसके विपरीत। विशेष रूप से, विशेष सापेक्षता के चार-आयामी स्पेसटाइम में, एक छद्म अदिश चौथे क्रम के टेंसर का दोहरा होता है और चार-आयामी लेवी-सिविटा प्रतीक | लेवी-सिविटा स्यूडोटेंसर के समानुपाती होता है।
स्थिति को किसी भी विमा तक बढ़ाया जा सकता है। आम तौर पर ''n''-विमीय दिक्स्थान में अनुक्रम ''r'' प्रदिश का हॉज द्विक अनुक्रम ''(n − r)'' और विपर्येण का एक प्रतिसममित छद्म प्रदिश होता है। विशेष रूप से, विशिष्ट आपेक्षिकता के चार-विमीय दिक्स्थान में, एक छद्म अदिश चौथे अनुक्रम के प्रदिश का द्वैत होता है और चार-विमीय [[लेवी-सिविटा छद्म प्रदिश]] के समानुपाती होता है।


===उदाहरण===
===उदाहरण===
* [[स्ट्रीम फ़ंक्शन]] <math>\psi(x,y)</math> द्वि-आयामी, असंपीड्य द्रव प्रवाह के लिए <math>\mathbf{v}\left(x,y\right)=\left\langle \partial_{y}\psi,-\partial_{x}\psi\right\rangle </math>.
* [[धारा-फलन]] <math>\psi(x,y)</math> द्वि-विमीय, असंपीड्य द्रव प्रवाह के लिए <math>\mathbf{v}\left(x,y\right)=\left\langle \partial_{y}\psi,-\partial_{x}\psi\right\rangle </math>.
* [[चुंबकीय आवेश]] एक छद्मअदिशहै क्योंकि इसे गणितीय रूप से परिभाषित किया गया है, भले ही यह भौतिक रूप से मौजूद हो या नहीं।
* [[चुंबकीय आवेश]] एक छद्म अदिश है क्योंकि इसे गणितीय रूप से परिभाषित किया गया है, भले ही यह भौतिक रूप से उपस्थित हो या न हो।
* [[चुंबकीय प्रवाह]] एक सदिश ([[सतह सामान्य]]) और स्यूडोसदिश  ([[चुंबकीय क्षेत्र]]) के बीच एक [[डॉट उत्पाद]] का परिणाम है।
* [[चुंबकीय प्रवाह]] एक सदिश ([[सतह सामान्य]]) और छद्म सदिश ([[चुंबकीय क्षेत्र]]) के मध्य एक [[डॉट उत्पाद|अदिश गुणनफल]] का परिणाम है।
* हेलिसिटी (कण भौतिकी) एक [[स्पिन (भौतिकी)]] स्यूडोसदिश  का संवेग की दिशा (एक सच्चा सदिश ) पर प्रक्षेपण (डॉट उत्पाद) है।
* कुंडलता एक [[स्पिन (भौतिकी)|प्रचव्रफण]] छद्म सदिश के संवेग की दिशा (एक वास्तविक सदिश) पर प्रक्षेपण ([[डॉट उत्पाद|अदिश गुणनफल]]) है।
* छद्म अदिश कण, यानी स्पिन 0 और विषम समता वाले कण, यानी, तरंग फ़ंक्शन के साथ कोई आंतरिक स्पिन वाला कण जो पैरिटी (भौतिकी) के तहत संकेत बदलता है। उदाहरण [[स्यूडोस्केलर मेसन|छद्म अदिश मेसन]] हैं।
* छद्म अदिश कण, अर्थात [[स्पिन (भौतिकी)|प्रचव्रफण]] 0 और विषम समता वाले कण, अर्थात, [[तरंग फलन]] के साथ कोई आंतरिक प्रचव्रफण वाला कण जो [[समता व्युत्क्रम]] के अंतर्गत चिहन बदलता है। उदाहरण [[स्यूडोस्केलर मेसन|छद्म अदिश मेसन]] हैं।


==ज्यामितीय बीजगणित में==
==ज्यामितीय बीजगणित में==

Revision as of 19:01, 8 July 2023

रैखिक बीजगणित में, एक छद्मअदिश एक राशि है जो एक अदिश के जैसा व्यवहार करती है, अतिरिक्त इसके कि यह समता व्युत्क्रम के अंतर्गत चिह्न बदलता है[1][2] जबकि एक यथार्थ अदिश ऐसा नहीं करता है।

एक छद्म सदिश और एक साधारण सदिश के मध्य कोई भी अदिश गुणनफल एक छद्म अदिश होता है। छद्म अदिश का प्रोटोटाइप उदाहरण अदिश त्रिक गुणनफल है, जिसे त्रिक गुणनफल में एक सदिश के मध्य अदिश गुणनफल और दो अन्य सदिशों के मध्य सदिश गुणनफल के रूप में लिखा जा सकता है, जहां बाद वाला एक छद्म सदिश है। एक छद्म अदिश, जब एक साधारण सदिश से गुणा किया जाता है, तो एक छद्म सदिश बन जाता है (अक्षीय सदिश ); एक समान निर्माण छद्मप्रदिश बनाता है।

गणितीय रूप से, एक छद्म अदिश एक सदिश समष्टि की मुख्य बाह्य घात, या क्लिफ़ोर्ड बीजगणित की मुख्य घात का एक अवयव है; छद्म अदिश (क्लिफ़ोर्ड बीजगणित) देखें। अधिक सामान्यतः, यह अवलकनीय मैनिफोल्ड के विहित बंडल का एक अवयव है।

भौतिकी में

भौतिकी में, एक छद्म अदिश एक अदिश के अनुरूप भौतिक राशि को दर्शाता है। दोनों भौतिक राशियाँ हैं जो एक एकल मान मान मानती हैं जो उचित घूर्णन के अंतर्गत निश्चर है। हालाँकि, समता रूपांतरण के अंतर्गत, छद्म अदिश अपने चिन्हों को फ़्लिप करते हैं जबकि अदिश ऐसा नहीं करते हैं। चूँकि एक समतल के माध्यम से परावर्तन समता रूपांतरण के साथ एक घूर्णन का संयोजन है, छद्म अदिश भी परावर्तन के अंतर्गत चिन्हों को बदलते हैं।

प्रेरणा

भौतिकी में सबसे प्रभावशाली सिद्धांतों में से एक यह है कि जब कोई इन नियमों का वर्णन करने के लिए उपयोग की जाने वाली निर्देशांक पद्धति को बदलता है तो भौतिक नियम नहीं बदलते हैं। जब निर्देशांक अक्ष उत्क्रमित होते हैं तो एक छद्म अदिश अपने चिन्ह को व्युत्क्रमित कर देता है, यह बताता है कि यह भौतिक राशि का वर्णन करने के लिए सबसे अच्छी वस्तु नहीं है। 3डी-स्पेस में, छद्म सदिश द्वारा वर्णित राशियाँ अनुक्रम 2 की प्रतिसममित प्रदिश हैं, जो व्युत्क्रमण के अंतर्गत निश्चर हैं। छद्म सदिश उस राशि का एक सरल निरूपण हो सकता है, लेकिन व्युत्क्रम के अंतर्गत चिहन के परिवर्तन से सफ़र्न है। इसी प्रकार, 3डी-स्पेस में, एक अदिश का हॉज द्विक 3-विमीय लेवी-सिविटा छद्म प्रदिश (या "क्रमचय" छद्म प्रदिश) के नियत समय के बराबर होता है; जबकि छद्म अदिश का हॉज द्विक अनुक्रम तीन का एक प्रतिसममित (स्पष्ट) प्रदिश है। लेवी-सिविटा छद्म प्रदिश अनुक्रम 3 का पूर्ण प्रकार से प्रतिसममित छद्म प्रदिश है। चूंकि छद्म अदिश का द्वैत दो "छद्म-राशियों" का गुणनफल है, परिणामी प्रदिश एक वास्तविक प्रदिश है, और अक्षों के व्युत्क्रमण पर चिहन नहीं बदलता है। छद्म सदिश का द्विक अनुक्रम 2 (और इसके विपर्येण) का प्रतिसममित प्रदिश है। निर्देशांक व्युत्क्रम के अंतर्गत प्रदिश एक निश्चर भौतिक राशि है, जबकि छद्म सदिश निश्चर नहीं है।

स्थिति को किसी भी विमा तक बढ़ाया जा सकता है। आम तौर पर n-विमीय दिक्स्थान में अनुक्रम r प्रदिश का हॉज द्विक अनुक्रम (n − r) और विपर्येण का एक प्रतिसममित छद्म प्रदिश होता है। विशेष रूप से, विशिष्ट आपेक्षिकता के चार-विमीय दिक्स्थान में, एक छद्म अदिश चौथे अनुक्रम के प्रदिश का द्वैत होता है और चार-विमीय लेवी-सिविटा छद्म प्रदिश के समानुपाती होता है।

उदाहरण

ज्यामितीय बीजगणित में

ज्यामितीय बीजगणित में एक छद्म अदिश बीजगणित का उच्चतम श्रेणी वाला सदिश स्पेस तत्व है। उदाहरण के लिए, दो आयामों में दो ऑर्थोगोनल आधार सदिश हैं, , और संबंधित उच्चतम श्रेणी का आधार तत्व है

तो एक छद्म अदिश ई का गुणज है12. तत्व ई12 वर्ग -1 तक और सभी सम तत्वों के साथ भ्रमण करता है - इसलिए जटिल संख्याओं में काल्पनिक अदिश i की तरह व्यवहार करता है। ये अदिश-जैसे गुण ही हैं जो इसके नाम को जन्म देते हैं।

इस सेटिंग में, एक छद्म अदिश समता व्युत्क्रम के तहत चिह्न बदलता है, यदि

(इ1, यह है2) → (में1, में2)

तब, आधार का परिवर्तन एक ऑर्थोगोनल परिवर्तन का प्रतिनिधित्व करता है

1e2 → यू1u2 = ±e1e2,

जहां संकेत परिवर्तन के निर्धारक पर निर्भर करता है। इस प्रकार ज्यामितीय बीजगणित में छद्म अदिश भौतिकी में छद्म अदिश के अनुरूप होते हैं।

संदर्भ

  1. Zee, Anthony (2010). "II. Dirac and the Spinor II.1 The Dirac Equation § Parity". संक्षेप में क्वांटम क्षेत्र सिद्धांत (2nd ed.). Princeton University Press. p. 98. ISBN 978-0-691-14034-6.
  2. Weinberg, Steven (1995). "5.5 Causal Dirac Fields §5.5.57". क्षेत्रों का क्वांटम सिद्धांत. Vol. 1: Foundations. Cambridge University Press. p. 228. ISBN 9780521550017.