क्रमसूचक सीमा: Difference between revisions

From Vigyanwiki
Line 9: Line 9:
*यह अपने नीचे के सभी क्रमादेशों के सर्वोच्च के बराबर है लेकिन शून्य नहीं है। (उत्तरवर्ती क्रमसूचक के साथ तुलना करें: इसके नीचे के क्रमसूचकों के सेट में एक अधिकतम है, इसलिए सर्वोच्च यह अधिकतम है, पिछला क्रमसूचक।)
*यह अपने नीचे के सभी क्रमादेशों के सर्वोच्च के बराबर है लेकिन शून्य नहीं है। (उत्तरवर्ती क्रमसूचक के साथ तुलना करें: इसके नीचे के क्रमसूचकों के सेट में एक अधिकतम है, इसलिए सर्वोच्च यह अधिकतम है, पिछला क्रमसूचक।)
*यह शून्य नहीं है तथा इसका कोई अधिकतम अवयव नहीं है।
*यह शून्य नहीं है तथा इसका कोई अधिकतम अवयव नहीं है।
*इसे α > 0 के लिए ωα के रूप में लिखा जा सकता है। अर्थात्, कैंटर सामान्य रूप में अंतिम पद के रूप में कोई परिमित संख्या नहीं है, और क्रमवाचक गैरशून्य है।
*इसे α > 0 के लिए ωα के रूप में लिखा जा सकता है। अर्थात्, कैंटर सामान्य रूप में अंतिम पद के रूप में कोई परिमित संख्या नहीं है, और क्रमसूचक गैरशून्य है।
*अनुक्रम सांस्थितिकी के संबंध में, यह क्रमसूचक संख्याओं के वर्ग का एक सीमा बिंदु है। (अन्य क्रमसूचक [[पृथक बिंदु]] हैं।)
*अनुक्रम सांस्थितिकी के संबंध में, यह क्रमसूचक संख्याओं के वर्ग का एक सीमा बिंदु है। (अन्य क्रमसूचक [[पृथक बिंदु]] हैं।)


Line 35: Line 35:
कार्डिनल संख्याओं की आनुक्रमिक और सीमा (हर चीज़ को उच्च स्तर पर अपग्रेड किया जाना) की अपनी धारणा है।
कार्डिनल संख्याओं की आनुक्रमिक और सीमा (हर चीज़ को उच्च स्तर पर अपग्रेड किया जाना) की अपनी धारणा है।


== अविभाज्य क्रम-वाचक ==
== अविभाज्य क्रमसूचक ==
{{main article|Indecomposable ordinal}}
{{main article|अविभाज्य क्रमसूचक}}


योगात्मक रूप से अविघट्य
'''योगात्मक रूप से अविभाज्य'''


एक सीमा क्रमसूचक α को योगात्मक रूप से अविभाज्य कहा जाता है यदि इसे α से कम β < α क्रमसूचकों के योग के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ किसी भी प्रकार के क्रमसूचक हैं <math>\omega^\beta</math> β के लिए एक क्रमसूचक. सबसे छोटा लिखा है <math>\gamma_0</math>, दूसरा लिखा है <math>\gamma_1</math>, वगैरह।<ref name=":0">{{Cite web|title=सीमा क्रमसूचक - कैंटर की अटारी|url=http://cantorsattic.info/Limit_ordinal#Types_of_Limits|access-date=2021-08-10|website=cantorsattic.info}}</ref>
सीमा क्रमसूचक α को योगात्मक रूप से अविभाज्य कहा जाता है यदि इसे α से कम β < α क्रमसूचक के योग के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ β के लिए <math>\omega^\beta</math> रूप में किसी भी प्रकार के क्रमसूचक हैं। सबसे छोटा लिखा जाता है <math>\gamma_0</math> दूसरा लिखा जाता है <math>\gamma_1</math>, इत्यादि।<ref name=":0">{{Cite web|title=सीमा क्रमसूचक - कैंटर की अटारी|url=http://cantorsattic.info/Limit_ordinal#Types_of_Limits|access-date=2021-08-10|website=cantorsattic.info}}</ref>
गुणात्मक रूप से अविभाज्य


एक सीमा क्रमसूचक α को गुणात्मक रूप से अविभाज्य कहा जाता है यदि इसे α से कम β < α क्रमसूचकों के उत्पाद के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ किसी भी प्रकार के क्रमसूचक हैं <math>\omega^{\omega^\beta}</math> β के लिए एक क्रमसूचक. सबसे छोटा लिखा है <math>\delta_0</math>, दूसरा लिखा है <math>\delta_1</math>, वगैरह।<ref name=":0" />
'''गुणात्मक रूप से अविभाज्य'''


घातांकीय रूप से अविभाज्य और परे
एक सीमा क्रमसूचक α को गुणात्मक रूप से अविभाज्य कहा जाता है यदि इसे β < α से कम के क्रमसूचकों के उत्पाद के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ β के लिए <math>\omega^{\omega^\beta}</math>रूप के किसी भी क्रमसूचक हैं। सबसे छोटे को डेल्टा <math>\delta_0</math> लिखा जाता है, दूसरे को <math>\delta_1</math>लिखा जाता है, आदि।<ref name=":0" />
 
'''घातीय रूप से अविभाज्य और अधिक'''


घातीय रूप से अविभाज्य शब्द का तात्पर्य उन क्रमसूचक से नहीं है जो β < α के घातीय उत्पाद ''(?)'' के रूप में अभिव्यक्त नहीं होते हैं, बल्कि α से कम के क्रमसूचक हैं, बल्कि [[एप्सिलॉन संख्या (गणित)]], टेट्राशनल रूप से अविभाज्य जीटा संख्याओं को संदर्भित करता है, जो पंचम रूप से अविभाज्य हैं। ईटा संख्या आदि को संदर्भित करता है।<ref name=":0" />
घातीय रूप से अविभाज्य शब्द का तात्पर्य उन क्रमसूचक से नहीं है जो β < α के घातीय उत्पाद ''(?)'' के रूप में अभिव्यक्त नहीं होते हैं, बल्कि α से कम के क्रमसूचक हैं, बल्कि [[एप्सिलॉन संख्या (गणित)]], टेट्राशनल रूप से अविभाज्य जीटा संख्याओं को संदर्भित करता है, जो पंचम रूप से अविभाज्य हैं। ईटा संख्या आदि को संदर्भित करता है।<ref name=":0" />

Revision as of 18:30, 8 July 2023

तक क्रमिक संख्याओं का प्रतिनिधित्वω. सर्पिल का प्रत्येक मोड़ ω की एक शक्ति का प्रतिनिधित्व करता है। सीमा क्रमसूचक वे हैं जो गैर-शून्य हैं और जिनका कोई पूर्ववर्ती नहीं है, जैसे ω या ω2

समुच्चय सिद्धांत में, एक सीमा क्रमसूचक एक क्रमसूचक संख्या होती है जो न तो शून्य होती है और न ही कोई आनुक्रमिक क्रमसूचक होती है। वैकल्पिक रूप से, यदि λ से कम कोई क्रमसूचक है तो एक क्रमसूचक λ एक सीमा क्रमसूचक है, और जब भी β λ से कम एक क्रमसूचक है, तो एक क्रमसूचक γ मौजूद होता है जैसे कि β < γ < λ। प्रत्येक क्रमसूचक संख्या या तो शून्य है, एक आनुक्रमिक क्रमसूचक है, या एक सीमा क्रमसूचक है।

उदाहरण के लिए, ω, हर प्राकृतिक संख्या से बड़ा सबसे छोटा क्रमसूचक एक सीमा क्रमसूचक है क्योंकि किसी भी छोटे क्रमसूचक के लिए (यानी, किसी भी प्राकृतिक संख्या के लिए)  n हम इससे बड़ी कोई अन्य प्राकृत संख्या पा सकते हैं (उदाहरण n+1), लेकिन फिर भी ω से कम है।

क्रमसूचक की वॉन न्यूमैन परिभाषा का उपयोग करते हुए, प्रत्येक ऑर्डिनल सभी छोटे क्रमसूचक का एक सुक्रमित समुच्चय होता है। क्रमसूचक के एक गैर-रिक्त समुच्चय का संघ जिसमें कोई सबसे बड़ा अवयव नहीं होता है, वह हमेशा एक सीमा ऑर्डिनल होता है। वॉन न्यूमैन कार्डिनल असाइनमेंट का उपयोग करते हुए, प्रत्येक अनंत कार्डिनल संख्या भी एक सीमा क्रमांक है।

वैकल्पिक परिभाषाएँ

सीमा क्रमसूचकों को परिभाषित करने के विभिन्न अन्य विधियां हैं:

  • यह अपने नीचे के सभी क्रमादेशों के सर्वोच्च के बराबर है लेकिन शून्य नहीं है। (उत्तरवर्ती क्रमसूचक के साथ तुलना करें: इसके नीचे के क्रमसूचकों के सेट में एक अधिकतम है, इसलिए सर्वोच्च यह अधिकतम है, पिछला क्रमसूचक।)
  • यह शून्य नहीं है तथा इसका कोई अधिकतम अवयव नहीं है।
  • इसे α > 0 के लिए ωα के रूप में लिखा जा सकता है। अर्थात्, कैंटर सामान्य रूप में अंतिम पद के रूप में कोई परिमित संख्या नहीं है, और क्रमसूचक गैरशून्य है।
  • अनुक्रम सांस्थितिकी के संबंध में, यह क्रमसूचक संख्याओं के वर्ग का एक सीमा बिंदु है। (अन्य क्रमसूचक पृथक बिंदु हैं।)

इस बात पर कुछ विवाद मौजूद है कि क्या 0 को सीमा क्रमसूचक के रूप में वर्गीकृत किया जाना चाहिए या नहीं, क्योंकि इसका कोई तत्काल पूर्ववर्ती नहीं है; कुछ पाठ्यपुस्तकों में सीमा क्रमसूचक की कक्षा में 0 शामिल है[1] जबकि अन्य इसे बाहर रखते हैं।[2]

उदाहरण

चूँकि क्रमसूचक संख्याओं का वर्ग आनुक्रमिक है, इसलिए सबसे छोटी अनंत सीमा क्रमसूचक होती है; ω (ओमेगा) द्वारा दर्शाया गया है। क्रमसूचक ω सबसे छोटा अनंत क्रमसूचक (सीमा की परवाह किए बिना) भी है, क्योंकि यह प्राकृतिक संख्याओं की सबसे कम ऊपरी सीमा है। इसलिए ω प्राकृतिक संख्याओं के क्रम प्रकार का प्रतिनिधित्व करता है। पहले के ऊपर अगली सीमा क्रमसूचक ω + ω = ω·2 है, जो किसी भी प्राकृतिक संख्या n के लिए ω·n को सामान्यीकृत करता है। सभी ω·n का संघ (क्रमसूचक के किसी भी सेट पर सर्वोच्च संक्रिया) लेते हुए, हमें ω·ω = ω2 मिलता है, जो किसी भी प्राकृतिक संख्या n के लिए ωn को सामान्यीकृत करता है। उत्पादन के लिए इस प्रक्रिया को इस प्रकार दोहराया जा सकता है:

सामान्य तौर पर, ये सभी पुनरावर्ती परिभाषाएँ गुणन, घातांक, बार-बार घातांक आदि के माध्यम से सीमा क्रमसूचक उत्पन्न करती हैं। अब तक चर्चा किए गए सभी क्रम-क्रम अभी भी गणनीय क्रम-क्रम हैं। हालाँकि, चर्च-क्लेन क्रमसूचक से कम के सभी क्रमसूचक को व्यवस्थित रूप से नामित करने के लिए कोई पुनरावर्ती गणना योग्य योजना नहीं है, जो कि एक गणनीय क्रमसूचक है।

गणनीय से परे, पहला असंख्य क्रमसूचक आमतौर पर ω1 दर्शाया जाता है। यह एक सीमा क्रमसूचक भी है।

आगे बढ़ते हुए, कोई निम्नलिखित प्राप्त कर सकता है (जिनमें से सभी अब प्रमुखता में बढ़ रहे हैं):

सामान्य तौर पर, हमें हमेशा एक सीमा क्रमसूचक मिलता है जब क्रमसूचकों के एक गैर-रिक्त सेट का संघ लिया जाता है जिसमें कोई अधिकतम तत्व नहीं होता है।

α > 0 के लिए फॉर्म ω²α के क्रमसूचक, सीमाओं की सीमा आदि हैं।

गुण

आनुक्रमिक क्रमसूचक और सीमा क्रमसूचक (विभिन्न सह-अंतिमताओं के) के साथ-साथ शून्य, क्रमसूचक के पूरे वर्ग को समाप्त कर देते हैं, इसलिए इन मामलों को अक्सर परिमितातीत प्रवर्तन या परिमितातीत प्रतिवर्तन द्वारा परिभाषाओं द्वारा प्रमाण में उपयोग किया जाता है। सीमा अध्यादेश ऐसी प्रक्रियाओं में एक प्रकार के "परिवर्तन का बिन्दू" का प्रतिनिधित्व करते हैं, जिसमें किसी को सभी पूर्ववर्ती क्रमसूचकों पर संघ को ले जाने जैसे सीमित संचालन का उपयोग करना चाहिए। सिद्धांत रूप में, कोई भी सीमित क्रमसूचक पर कुछ भी कर सकता है, लेकिन यूनियन को ऑर्डर टोपोलॉजी में निरंतर लेना है और यह आमतौर पर वांछनीय है।

यदि हम वॉन न्यूमैन कार्डिनल असाइनमेंट का उपयोग करते हैं, तो प्रत्येक अपरिमित कार्डिनल संख्या भी एक सीमा क्रमसूचक है (और यह एक उपयुक्त अवलोकन है, क्योंकि कार्डिनल लैटिन कार्डो से निकला है जिसका अर्थ है काज या वर्तन बिंदु): इस तथ्य का प्रमाण केवल दिखाने से होता है होटल इन्फिनिटी तर्क के माध्यम से प्रत्येक अनंत उत्तराधिकारी क्रमसूचक एक सीमा क्रमसूचक के समतुल्य है।

कार्डिनल संख्याओं की आनुक्रमिक और सीमा (हर चीज़ को उच्च स्तर पर अपग्रेड किया जाना) की अपनी धारणा है।

अविभाज्य क्रमसूचक

योगात्मक रूप से अविभाज्य

सीमा क्रमसूचक α को योगात्मक रूप से अविभाज्य कहा जाता है यदि इसे α से कम β < α क्रमसूचक के योग के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ β के लिए रूप में किसी भी प्रकार के क्रमसूचक हैं। सबसे छोटा लिखा जाता है दूसरा लिखा जाता है , इत्यादि।[3]

गुणात्मक रूप से अविभाज्य

एक सीमा क्रमसूचक α को गुणात्मक रूप से अविभाज्य कहा जाता है यदि इसे β < α से कम के क्रमसूचकों के उत्पाद के रूप में व्यक्त नहीं किया जा सकता है। ये संख्याएँ β के लिए रूप के किसी भी क्रमसूचक हैं। सबसे छोटे को डेल्टा लिखा जाता है, दूसरे को लिखा जाता है, आदि।[3]

घातीय रूप से अविभाज्य और अधिक

घातीय रूप से अविभाज्य शब्द का तात्पर्य उन क्रमसूचक से नहीं है जो β < α के घातीय उत्पाद (?) के रूप में अभिव्यक्त नहीं होते हैं, बल्कि α से कम के क्रमसूचक हैं, बल्कि एप्सिलॉन संख्या (गणित), टेट्राशनल रूप से अविभाज्य जीटा संख्याओं को संदर्भित करता है, जो पंचम रूप से अविभाज्य हैं। ईटा संख्या आदि को संदर्भित करता है।[3]


यह भी देखें

संदर्भ

  1. for example, Thomas Jech, Set Theory. Third Millennium edition. Springer.
  2. for example, Kenneth Kunen, Set Theory. An introduction to independence proofs. North-Holland.
  3. 3.0 3.1 3.2 "सीमा क्रमसूचक - कैंटर की अटारी". cantorsattic.info. Retrieved 2021-08-10.


अग्रिम पठन

  • Cantor, G., (1897), Beitrage zur Begrundung der transfiniten Mengenlehre. II (tr.: Contributions to the Founding of the Theory of Transfinite Numbers II), Mathematische Annalen 49, 207-246 English translation.
  • Conway, J. H. and Guy, R. K. "Cantor's Ordinal Numbers." In The Book of Numbers. New York: Springer-Verlag, pp. 266–267 and 274, 1996.
  • Sierpiński, W. (1965). Cardinal and Ordinal Numbers (2nd ed.). Warszawa: Państwowe Wydawnictwo Naukowe. Also defines ordinal operations in terms of the Cantor Normal Form.