कॉची गुणनफल: Difference between revisions

From Vigyanwiki
Line 111: Line 111:
<math display="block">\sum_{k_1 = 0}^\infty \left| \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2} \right|</math>
<math display="block">\sum_{k_1 = 0}^\infty \left| \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2} \right|</math>
अभिसरण, और इसलिए श्रेणी
अभिसरण, और इसलिए श्रेणी
<math display="block">\sum_{k_1 = 0}^\infty \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2}</math>
<math display="block">\sum_{k_1 = 0}^\infty \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2}</math>पूर्ण रूप से अभिसरण। इसलिए, प्रेरण परिकल्पना से, मर्टेंस ने जो सिद्ध किया, और चरों के नाम बदलने से, हमारे पास है:
बिल्कुल एकाग्र हो जाता है। इसलिए, प्रेरण परिकल्पना द्वारा, मर्टेंस ने जो साबित किया, और चर के नाम बदलकर, हमारे पास है:
<math display="block">\begin{align}
<math display="block">\begin{align}
\prod_{j=1}^{n+1} \left( \sum_{k_j = 0}^\infty a_{j, k_j} \right) & = \left( \sum_{k_{n+1} = 0}^\infty \overbrace{a_{n+1, k_{n+1}}}^{=:a_{k_{n+1}}} \right) \left( \sum_{k_1 = 0}^\infty \overbrace{\sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2}}^{=:b_{k_1}} \right) \\
\prod_{j=1}^{n+1} \left( \sum_{k_j = 0}^\infty a_{j, k_j} \right) & = \left( \sum_{k_{n+1} = 0}^\infty \overbrace{a_{n+1, k_{n+1}}}^{=:a_{k_{n+1}}} \right) \left( \sum_{k_1 = 0}^\infty \overbrace{\sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2}}^{=:b_{k_1}} \right) \\
Line 130: Line 129:


& = \sum_{k_1 = 0}^\infty \sum_{k_2 = 0}^{k_1} a_{n+1, k_1 - k_2} \sum_{k_3 = 0}^{k_2} \cdots \sum_{k_{n+1} = 0}^{k_n} a_{1, k_{n+1}} a_{2, k_n - k_{n+1}} \cdots a_{n, k_2 - k_3}
& = \sum_{k_1 = 0}^\infty \sum_{k_2 = 0}^{k_1} a_{n+1, k_1 - k_2} \sum_{k_3 = 0}^{k_2} \cdots \sum_{k_{n+1} = 0}^{k_n} a_{1, k_{n+1}} a_{2, k_n - k_{n+1}} \cdots a_{n, k_2 - k_3}
\end{align}</math>
\end{align}</math>इसलिए, सूत्र <math>n+1</math> के लिए भी मान्य है।
इसलिए, सूत्र भी लागू होता है <math>n+1</math>.


== फ़ंक्शंस के सवलन से संबंध ==
== फ़ंक्शंस के सवलन से संबंध ==
एक परिमित अनुक्रम को एक अनंत अनुक्रम के रूप में देखा जा सकता है जिसमें केवल बहुत से गैर-शून्य पद होते हैं, या दूसरे शब्दों में एक फ़ंक्शन के रूप में देखा जा सकता है <math>f: \N \to \Complex</math> सीमित समर्थन के साथ. किसी भी जटिल-मूल्यवान फ़ंक्शन के लिए f, g on <math>\N</math> सीमित समर्थन के साथ, कोई अपना [[कनवल्शन (गणित)|सवलन (गणित)]] ले सकता है:
एक परिमित अनुक्रम को केवल सीमित रूप से कई गैर-शून्य शब्दों के साथ एक अनंत अनुक्रम के रूप में देखा जा सकता है, या दूसरे शब्दों में एक फ़ंक्शन के रूप में: <math>f: \N \to \Complex</math> परिमित समर्थन के साथ। परिमित समर्थन के साथ <math>\N</math> पर किसी भी जटिल-मूल्यवान फ़ंक्शन f, g के लिए, कोई भी अपना सवलन ले सकता है:<math display="block">(f * g)(n) = \sum_{i + j = n} f(i) g(j).</math>तब <math display="inline">\sum (f *g)(n)</math>, <math display="inline">\sum f(n)</math> और योग <math display="inline">\sum g(n)</math> के कॉची उत्पाद के समान है।
<math display="block">(f * g)(n) = \sum_{i + j = n} f(i) g(j).</math>
तब <math display="inline">\sum (f *g)(n)</math> के कॉची गुणनफल के समान ही है <math display="inline">\sum f(n)</math> और <math display="inline">\sum g(n)</math>.


अधिक सामान्यतः, एक मोनॉयड एस दिए जाने पर, कोई [[अर्धसमूह बीजगणित]] बना सकता है <math>\Complex[S]</math> एस का, सवलन द्वारा दिए गए गुणन के साथ। यदि कोई लेता है, उदाहरण के लिए, <math>S = \N^d</math>, फिर गुणा पर <math>\Complex[S]</math> उच्च आयाम के लिए कॉची गुणनफल का सामान्यीकरण है।
 
अधिक आम तौर पर, एक मोनॉइड एस दिया जाता है, कोई [[अर्धसमूह बीजगणित]] बना सकता है एस का <math>\Complex[S]</math>, कन्वल्शन द्वारा दिए गए गुणन के साथ। यदि कोई, उदाहरण के लिए, <math>S = \N^d</math> लेता है, तो <math>\Complex[S]</math> पर गुणन कॉची उत्पाद का उच्च आयाम के लिए सामान्यीकरण है।


==टिप्पणियाँ==
==टिप्पणियाँ==
{{reflist}}
{{reflist}}
==संदर्भ==
==संदर्भ==
*{{Citation
*{{Citation
Line 277: Line 272:
  | year = 2014
  | year = 2014
}}.
}}.
==बाहरी संबंध==
==बाहरी संबंध==
*{{Cite web
*{{Cite web

Revision as of 11:19, 8 July 2023

गणित में, विशेषकर गणितीय विश्लेषण में, कॉची गुणनफल दो अनंत श्रेणियों का असतत सवलन है। इसका नाम फ्रांसीसी गणितज्ञ ऑगस्टिन-लुई कॉची के नाम पर रखा गया है।

परिभाषाएँ

कॉची गुणनफल अनंत श्रेणी [1][2][3][4][5][6][7][8][9][10][11] या पावर श्रेणी पर लागू हो सकता है।[12][13] जब लोग इसे परिमित अनुक्रमों[14] या परिमित श्रेणी पर लागू करते हैं, तो इसे केवल गैर-शून्य गुणांकों की एक सीमित संख्या के साथ श्रेणी के गुणनफल के एक विशेष मामले के रूप में देखा जा सकता है (अलग-अलग सवलन देखें)।

अभिसरण विषयों पर अगले भाग में चर्चा की गई है।

दो अपरिमित श्रेणियों का कॉची गुणनफल

मान लीजिये और जटिल पदों वाली दो अनंत श्रृंखलाएँ हों। इन दो अनंत श्रेणियों के कॉची गुणनफल को असतत सवलन द्वारा निम्नानुसार परिभाषित किया गया है:

कहाँ .

द्वि घात श्रेणी का कॉची गुणनफल

निम्नलिखित द्वि घात श्रेणियों पर विचार करें

और

जटिल गुणांकों के साथ और . इन द्वि घात श्रेणियों के कॉची गुणनफल को असतत सवलन द्वारा निम्नानुसार परिभाषित किया गया है:

कहाँ .

अभिसरण और मर्टेंस प्रमेय

मान लीजिए (an)n≥0 और (bn)n≥0 वास्तविक या जटिल अनुक्रम हैं। यह फ्रांज मर्टेंस द्वारा सिद्ध किया गया था कि, यदि श्रेणी A में परिवर्तित हो जाती है और B में परिवर्तित हो जाता है, और उनमें से कम से कम एक पूर्ण रूप से परिवर्तित हो जाता है, फिर उनका कॉची गुणनफल AB में परिवर्तित हो जाता है।[15] प्रमेय अभी भी बानाच बीजगणित में मान्य है (निम्नलिखित प्रमाण की पहली पंक्ति देखें)।

यह दोनों श्रेणियों का अभिसरण होने के लिए पर्याप्त नहीं है; यदि दोनों अनुक्रम सशर्त रूप से अभिसरण हैं, तो कॉची गुणनफल को दो श्रेणियों के गुणनफल की ओर अभिसरण करने की आवश्यकता नहीं है, जैसा कि निम्नलिखित उदाहरण से पता चलता है:

उदाहरण

दो वैकल्पिक श्रेणियों पर विचार करें

जो केवल सशर्त रूप से अभिसरण हैं (पूर्ण मूल्यों की श्रेणी का विचलन प्रत्यक्ष तुलना परीक्षण और हार्मोनिक श्रेणी (गणित) के विचलन से होता है)। उनके कॉची गुणनफल की शर्तें दी गई हैं

प्रत्येक पूर्णांक n ≥ 0 के लिए। चूँकि प्रत्येक k ∈ {0, 1, ..., n} के लिए, हमारे पास असमानताएँ k + 1 ≤ n + 1और nk + 1 ≤ n + 1 हैं, यह निम्न के लिए अनुसरण करता है हर में वर्गमूल कि (k + 1)(nk + 1)n +1 इसलिए, क्योंकि n + 1 योग हैं,

प्रत्येक पूर्णांक n ≥ 0 के लिए। इसलिए, cn, n → ∞ के रूप में शून्य में परिवर्तित नहीं होता है, इसलिए (cn)n≥0 की श्रेणी परीक्षण शब्द से भिन्न होती है।

मर्टेंस प्रमेय का प्रमाण

सरलता के लिए, हम इसे जटिल संख्याओं के लिए सिद्ध करेंगे। हालाँकि, जो प्रमाण हम देने जा रहे हैं वह औपचारिक रूप से एक मनमाना बनच बीजगणित के लिए समान है (यहां तक कि क्रमविनिमेयता या साहचर्यता की भी आवश्यकता नहीं है)।

व्यापकता खोए बिना मान लें कि श्रेणी पूर्णतः अभिसरण करती है।

आंशिक योग परिभाषित करें

साथ

तब

पुनर्व्यवस्था द्वारा, इसलिए

 

 

 

 

(1)

ε > 0 हल करें। चूँकि पूर्ण अभिसरण द्वारा, और चूँकि Bn, B में n → ∞ के रूप में परिवर्तित होता है, इसलिए एक पूर्णांक N मौजूद होता है, जैसे कि सभी पूर्णांक nN के लिए,

 

 

 

 

(2)

(यह एकमात्र स्थान है जहां निरपेक्ष अभिसरण का उपयोग किया जाता है)। चूँकि (an)n≥0 की श्रेणी अभिसरित होती है, an परीक्षण शब्द के अनुसार 0 पर अभिसरण करना होगा। इसलिए एक पूर्णांक M का अस्तित्व इस प्रकार है कि, सभी पूर्णांक nM के लिए,

 

 

 

 

(3)

साथ ही, चूँकि An, n → ∞ के रूप में A में परिवर्तित होता है, इसलिए एक पूर्णांक L उपस्तिथि होता है, जैसे कि सभी पूर्णांकों nL के लिए,

 

 

 

 

(4)

फिर, सभी पूर्णांकों n ≥ max{L, M + N} के लिए, Cn के लिए निरूपण (1) का उपयोग करें, योग को दो भागों में विभाजित करें, निरपेक्ष मान के लिए त्रिभुज असमानता का उपयोग करें, और अंत में तीन अनुमानों (2) का उपयोग करें , (3) तथा (4) यह दर्शाने के लिए

एक श्रेणी के अभिसरण की परिभाषा के अनुसार, आवश्यकतानुसार CnAB

सेसारो का प्रमेय

ऐसे मामलों में जहां दो अनुक्रम अभिसरण हैं लेकिन पूर्ण रूप से अभिसरण नहीं हैं, कॉची गुणनफल अभी भी सेसरो योग्य है। विशेषतः यदि , और के साथ वास्तविक अनुक्रम हैं तो


इसे उस मामले में सामान्यीकृत किया जा सकता है जहां दो अनुक्रम अभिसरण नहीं हैं बल्कि केवल सेसरो सारांशित हैं:

प्रमेय

और के लिए, मान लीजिए कि क्रम योग A और के साथ योग योग्य है। योग B के साथ योग करने योग्य है। तब उनका कॉची गुणनफल योग AB के साथ संक्षेपणीय है।

उदाहरण

  • कुछ के लिए ,मान लीजिये और . तब
    परिभाषा और द्विपद सूत्र द्वारा. चूँकि, औपचारिक श्रेणी, और हमने दिखाया है कि । चूँकि दो पूर्णतया अभिसरण श्रेणियों के कॉची गुणनफल की सीमा उन श्रेणियों की सीमाओं के गुणनफल के बराबर है, हमने सूत्र को सिद्ध कर दिया है

सभी के लिए।

  • दूसरे उदाहरण के रूप में, सभी के लिए मान लीजिए। फिर सभी के लिए इसलिए कॉची गुणनफल
    अभिसरण नहीं होता।

सामान्यीकरण

पूर्वगामी सभी (जटिल संख्या) में अनुक्रमों पर लागू होते हैं। कॉची उत्पाद को रिक्त स्थान (यूक्लिडियन स्थान) में एक श्रृंखला के रूप में परिभाषित किया जा सकता है जहां गुणन आंतरिक उत्पाद है। इस मामले में, हमारे पास यह परिणाम है कि यदि दो श्रृंखलाएं पूरी तरह से अभिसरित होती हैं तो उनका कॉची उत्पाद पूरी तरह से सीमाओं के आंतरिक उत्पाद में अभिसरण करता है।

परिमित रूप से अनेक परिमित श्रेणियों के उत्पाद

मान लीजिए इस प्रकार है कि (वास्तव में निम्नलिखित के लिए भी सत्य है लेकिन उस स्थिति में कथन तुच्छ हो जाता है) और को जटिल गुणांकों के साथ अनंत श्रृंखला होने दें, जिसमें से वें को छोड़कर सभी पूर्णतः अभिसरण होता है, और वाँ अभिसरण होता है। तब सीमा


प्राप्त है और हमारे पास है:

प्रमाण

क्योंकि

कथन को से अधिक प्रेरण द्वारा सिद्ध किया जा सकता है: का मामला कॉची उत्पाद के बारे में दावे के समान है। यह हमारा इंडक्शन बेस है।

प्रेरण चरण इस प्रकार है: मान लीजिए कि प्राप्य सत्य है इस प्रकार कि और मान लीजिए अनंत हो जटिल गुणांकों वाली श्रृंखला, जिसमें से वें को छोड़कर सभी पूर्णतया अभिसरित होते हैं, और वें वाले को छोड़कर सभी अभिसरित होते हैं। हम सबसे पहले प्रेरण परिकल्पना को श्रृंखला में लागू करते हैं हम वह श्रृंखला प्राप्त करते हैं:

अभिसरण, और इसलिए, त्रिकोण असमानता और सैंडविच मानदंड, श्रेणी द्वारा
अभिसरण, और इसलिए श्रेणी
पूर्ण रूप से अभिसरण। इसलिए, प्रेरण परिकल्पना से, मर्टेंस ने जो सिद्ध किया, और चरों के नाम बदलने से, हमारे पास है: