वितरणशीलता (अनुक्रम सिद्धांत): Difference between revisions
Line 39: | Line 39: | ||
के समतुल्य नहीं है जो द्वैती फ्रेम या पूर्ण सह-हेटिंग बीजगणित के वर्ग को परिभाषित करता है। | के समतुल्य नहीं है जो द्वैती फ्रेम या पूर्ण सह-हेटिंग बीजगणित के वर्ग को परिभाषित करता है। | ||
अब एक चरण आगे बढ़ाकर विभिन्न संयोजन सीमित सम्मेलन पर वितरित हो सकते हैं तथा साथ ही उन आदेशों को परिभाषित किया जा सकता है। ऐसी संरचनाओं को [[पूर्णतः वितरणात्मक जालक]] कहा जाता है। हालांकि, इसे व्यक्त करने के लिए ऐसी प्रस्तावनाएं आवश्यक होती हैं जो थोड़ी सी तकनीकी होती हैं। एक पूर्ण जालक के तत्वों के एक द्विगुणांकित परिवार {x<sub>''j'',''k''</sub> | J J में है, K K(j) में है} का विचार करें, और F को ऐसे चयनित फलनो f का सेट बनाएं जो प्रत्येक जाँचक J के लिए j के कुछ जाँचक f(j) K(j) में होता है। | अब एक चरण आगे बढ़ाकर विभिन्न संयोजन सीमित सम्मेलन पर वितरित हो सकते हैं तथा साथ ही उन आदेशों को परिभाषित किया जा सकता है। ऐसी संरचनाओं को [[पूर्णतः वितरणात्मक जालक]] कहा जाता है। हालांकि, इसे व्यक्त करने के लिए ऐसी प्रस्तावनाएं आवश्यक होती हैं जो थोड़ी सी तकनीकी होती हैं। एक पूर्ण जालक के तत्वों के एक द्विगुणांकित परिवार {x<sub>''j'',''k''</sub> | J J में है, K K(j) में है} का विचार करें, और F को ऐसे चयनित फलनो f का सेट बनाएं जो प्रत्येक जाँचक J के लिए j के कुछ जाँचक f(j) K(j) में होता है। यदि सभी ऐसे डेटा के लिए निम्नलिखित कथन सत्य होता है तो एक पूर्ण जालक पूर्ण वितरणीय होता है, | ||
: <math> \bigwedge_{j\in J}\bigvee_{k\in K(j)} x_{j,k} = | : <math> \bigwedge_{j\in J}\bigvee_{k\in K(j)} x_{j,k} = | ||
\bigvee_{f\in F}\bigwedge_{j\in J} x_{j,f(j)} | \bigvee_{f\in F}\bigwedge_{j\in J} x_{j,f(j)} | ||
</math> | </math> | ||
पूर्ण | पूर्ण वितरणीयता फिर से एक स्व-द्वैतीय गुण है, अर्थात् उपरोक्त कथन को द्वैतीय करने से पूर्ण जालक की एक ही श्रेणी प्राप्त होती है। पूरी तरह से वितरणात्मक पूर्ण जालक (संक्षेप में पूरी तरह से वितरणात्मक जालक भी कहा जाता है) वास्तव में अत्यधिक विशेष संरचनाएं हैं। [[पूरी तरह से वितरणात्मक जालकों]] पर लेख देखें। | ||
==साहित्य== | ==साहित्य== | ||
वितरण एक बुनियादी अवधारणा है जिसका वर्णन जालक और क्रम सिद्धांत पर किसी भी पाठ्यपुस्तक में किया जाता है। आदेश सिद्धांत और जालक सिद्धांत पर लेखों के लिए | वितरण एक बुनियादी अवधारणा है जिसका वर्णन जालक और क्रम सिद्धांत पर किसी भी पाठ्यपुस्तक में किया जाता है। [[आदेश सिद्धांत]] और [[जालक सिद्धांत]] पर दिए गए लेखों के लिए प्रदत्त साहित्य को देखें। अधिक विशिष्ट साहित्य में सम्मिलित हैं, | ||
* जी.एन. राने, | * जी.एन. राने, पूर्णतः वितरणात्मक पूर्ण जालक, [[अमेरिकन गणितीय सोसायटी|अमेरिकन गणितीय समाज का प्रकाशन]], 3: 677 - 680, 1952। | ||
{{reflist}} | {{reflist}} | ||
{{DEFAULTSORT:Distributivity (Order Theory)}} | {{DEFAULTSORT:Distributivity (Order Theory)}} | ||
श्रेणी | |||
श्रेणी,आदेश सिद्धांत | |||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 01/07/2023]] | [[Category:Created On 01/07/2023]] |
Revision as of 10:57, 7 July 2023
This article needs additional citations for verification. (मई 2014) (Learn how and when to remove this template message) |
आदेश सिद्धांत के गणितीय क्षेत्र में, वितरण की सामान्य अवधारणा की विभिन्न धारणाएँ हैं, जो सर्वोच्च और निम्न के गठन पर लागू होती हैं। इनमें से अधिकांश आंशिक रूप से सुव्यवस्थित किए गए सेटों पर लागू होते हैं जो कम से कम जालक होते हैं, लेकिन वास्तविकता में यह अवधारणा अर्ध-जालक के लिए भी यथार्थ रूप से सामान्यीकृत की जा सकती है।
वितरणात्मक जालक
संभवतः वितरण का सबसे सामान्य प्रकार वह है जो जालकों के लिए परिभाषित है, जहां द्विआधारी सर्वोच्च और निम्न का गठन संयोजन () और सम्मेलन () के पूर्ण संचालन प्रदान करता है। इन दोनों संक्रियाओं की वितरणशीलता को तब यह आवश्यक करके व्यक्त किया जाता है कि पहचान
सभी तत्वों x, y, और z के लिए बनी रहे। यह वितरण कानून 'वितरणात्मक जालक' के वर्ग को परिभाषित करता है। ध्यान दें कि इस आवश्यकता को यह कहकर दोबारा दोहराया जा सकता है कि द्विआधारी सम्मेलन द्विआधारी संयोजन को संरक्षित करती है। ऊपर दिए गए कथन को उसके आदेश द्विपक्ष
के समतुल्य माना जाता है, जिसका एक या अधिकतम गुण जालकों के लिए वितरणता की परिभाषा के लिए पर्याप्त होता है। वितरणात्मक जालक के विशिष्ट उदाहरण संपूर्ण सुव्यवस्थित किए गए सेट, बूलियन बीजगणित और हेटिंग बीजगणित हैं। प्रत्येक परिमित वितरणात्मक जालक सेटों की एक जालक के लिए समरूपता का आदेश देती है, जो समावेशन (बिरखॉफ के प्रतिनिधित्व प्रमेय) द्वारा क्रमबद्ध होती है।
अर्ध जालक के लिए वितरण
एक अर्ध जालक एक आंशिक आदेशित सेट है जिसमें दो जालक संचालनों में से केवल एक होता है, जो या तो एक सम्मेलन-अर्ध जालक होता है या एक संयोजन-अर्ध जालक होता है। जब एक ही द्विआधारी संचालन होता है, तो स्पष्ट रूप से वितरणता को मानक तरीके से परिभाषित नहीं किया जा सकता है। फिर भी, दिए गए आदेश के साथ एकल संचालन के प्रभाव के कारण, वितरणता की निम्नलिखित परिभाषा संभव होती है। यदि सभी a, b और x के लिए एक सम्मेलन- अर्ध जालक वितरणीय होता है, तो
- यदि a ∧ b ≤ x होता है तो a′ और b' उपस्थित होते हैं जिसके लिए a ≤ a′, b ≤ b' और x = a′ ∧ b' होता है।
वितरणीय संयोजन-अर्ध जालक द्वित्वयापीत रूप से परिभाषित किया जाता है, यदि सभी a, b और x के लिए एक संयोजन-अर्ध जालक वितरणीय होता है, तो
- यदि x ≤ a ∨ b होता है तो ऐसे a′ और b′ उपस्थित होते हैं जिसके लिए a' ≤ a, b' ≤ b और x = a' ∨ b' होता है।
किसी भी स्थिति में, a' और b' को अद्वितीय होने की आवश्यकता नहीं है। ये परिभाषाएं यहाँ उचित होती हैं क्योंकि किसी भी जालक L के लिए, निम्नलिखित विधियाँ सभी एक समान होती हैं
- L सम्मेलन-अर्ध जालक के रूप में वितरणात्मक है
- L संयोजन-अर्ध जालक के रूप में वितरणात्मक है
- L एक वितरणात्मक जालक है।
इस प्रकार कोई भी वितरणात्मक सम्मेलन-अर्ध जालक जिसमें द्विआधारी संयोजन उपस्थित होते हैं, वह एक वितरणात्मक जालक होता है। एक संयोजन-अर्ध जालक वितरणात्मक है यदि इसके आदर्शों के जालक (समावेशन के तहत) वितरणात्मक है।[1]
वितरणशीलता की यह परिभाषा वितरणात्मक अक्षांशों के बारे में कुछ कथनों को वितरणात्मक अर्ध जालक के रूप में सामान्यीकृत करने की अनुमति देती है।
पूर्ण जालकों के लिए वितरण नियम
एक पूर्ण जालक के लिए, विभिन्न उपसमूहों में निम्नतम और अधिकतम एक साथ होते हैं और इसलिए असीमित सम्मेलन और संयोजन संचालन उपलब्ध होते हैं। इस प्रकार वितरण की कई विस्तारित धारणाओं का वर्णन किया जा सकता है। उदाहरण के रूप में, असीमित वितरणीय कानून के लिए, सीमित सम्मेलन विभिन्न संयोजनों पर वितरित हो सकते हैं, अर्थात्
जालक के सभी तत्वों x और सभी उपसमुच्चय S के लिए संभव हो सकता है। इस गुण के साथ पूर्ण जालकों को 'फ़्रेम', 'लोकेल्स' या 'पूर्ण हेटिंग बीजगणित' कहा जाता है। वे निरर्थक सीन विज्ञान और स्टोन द्वैतीयता के संबंध में उत्पन्न होते हैं। यह वितरणात्मक नियम इसके दोहरे कथन
के समतुल्य नहीं है जो द्वैती फ्रेम या पूर्ण सह-हेटिंग बीजगणित के वर्ग को परिभाषित करता है।
अब एक चरण आगे बढ़ाकर विभिन्न संयोजन सीमित सम्मेलन पर वितरित हो सकते हैं तथा साथ ही उन आदेशों को परिभाषित किया जा सकता है। ऐसी संरचनाओं को पूर्णतः वितरणात्मक जालक कहा जाता है। हालांकि, इसे व्यक्त करने के लिए ऐसी प्रस्तावनाएं आवश्यक होती हैं जो थोड़ी सी तकनीकी होती हैं। एक पूर्ण जालक के तत्वों के एक द्विगुणांकित परिवार {xj,k | J J में है, K K(j) में है} का विचार करें, और F को ऐसे चयनित फलनो f का सेट बनाएं जो प्रत्येक जाँचक J के लिए j के कुछ जाँचक f(j) K(j) में होता है। यदि सभी ऐसे डेटा के लिए निम्नलिखित कथन सत्य होता है तो एक पूर्ण जालक पूर्ण वितरणीय होता है,
पूर्ण वितरणीयता फिर से एक स्व-द्वैतीय गुण है, अर्थात् उपरोक्त कथन को द्वैतीय करने से पूर्ण जालक की एक ही श्रेणी प्राप्त होती है। पूरी तरह से वितरणात्मक पूर्ण जालक (संक्षेप में पूरी तरह से वितरणात्मक जालक भी कहा जाता है) वास्तव में अत्यधिक विशेष संरचनाएं हैं। पूरी तरह से वितरणात्मक जालकों पर लेख देखें।
साहित्य
वितरण एक बुनियादी अवधारणा है जिसका वर्णन जालक और क्रम सिद्धांत पर किसी भी पाठ्यपुस्तक में किया जाता है। आदेश सिद्धांत और जालक सिद्धांत पर दिए गए लेखों के लिए प्रदत्त साहित्य को देखें। अधिक विशिष्ट साहित्य में सम्मिलित हैं,
- जी.एन. राने, पूर्णतः वितरणात्मक पूर्ण जालक, अमेरिकन गणितीय समाज का प्रकाशन, 3: 677 - 680, 1952।
- ↑ G. Grätzer (2011). Lattice Theory: Foundation. Springer/Birkhäuser.; here: Sect. II.5.1, p.167
श्रेणी,आदेश सिद्धांत