हर्मिटियन मैनिफोल्ड: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Concept in differential geometry}} {{Use American English|date = March 2019}} गणित में, और अधिक विशेष रूप से...")
 
No edit summary
Line 1: Line 1:
{{Short description|Concept in differential geometry}}
{{Short description|Concept in differential geometry}}
{{Use American English|date = March 2019}}
[[गणित]] में, और अधिक विशेष रूप से [[विभेदक ज्यामिति]] में, एक '''हर्मिटियन मैनिफोल्ड''' [[रीमैनियन मैनिफोल्ड]] का जटिल अनुरूप है। अधिक सटीक रूप से, एक हर्मिटियन मैनिफोल्ड एक [[जटिल मैनिफोल्ड]] है जिसमें प्रत्येक (पूर्णसममितिक) [[स्पर्शरेखा स्थान|स्पर्शी समष्टि]] पर एक सुचारु रूप से भिन्न [[हर्मिटियन रूप]] [[आंतरिक उत्पाद]] होता है। कोई हर्मिटियन मैनिफोल्ड को [[रीमैनियन मीट्रिक|रीमैनियन मापीय]] के साथ वास्तविक मैनिफोल्ड के रूप में भी परिभाषित कर सकता है जो [[ जटिल अनेक गुना ]] को संरक्षित करता है।
गणित में, और अधिक विशेष रूप से [[विभेदक ज्यामिति]] में, एक हर्मिटियन मैनिफोल्ड [[रीमैनियन मैनिफोल्ड]] का जटिल एनालॉग है। अधिक सटीक रूप से, एक हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसमें प्रत्येक (होलोमोर्फिक) [[स्पर्शरेखा स्थान]] पर एक सुचारु रूप से भिन्न [[हर्मिटियन रूप]] आंतरिक उत्पाद होता है। कोई हर्मिटियन मैनिफोल्ड को [[रीमैनियन मीट्रिक]] के साथ वास्तविक मैनिफोल्ड के रूप में भी परिभाषित कर सकता है जो [[ जटिल अनेक गुना ]] को संरक्षित करता है।


एक जटिल संरचना अनिवार्य रूप से एक अभिन्नता स्थिति के साथ लगभग एक जटिल संरचना है, और यह स्थिति कई गुना पर एक एकात्मक संरचना ([[जी-संरचना]] | यू (एन) संरचना) उत्पन्न करती है। इस स्थिति को छोड़ने पर, हमें लगभग हर्मिटियन मैनिफोल्ड प्राप्त होता है।
एक जटिल संरचना अनिवार्य रूप से एक अभिन्नता स्थिति के साथ लगभग एक जटिल संरचना है, और यह स्थिति कई गुना पर एक एकात्मक संरचना ([[जी-संरचना]] | यू (एन) संरचना) उत्पन्न करती है। इस स्थिति को छोड़ने पर, हमें लगभग हर्मिटियन मैनिफोल्ड प्राप्त होता है।


किसी भी लगभग हर्मिटियन मैनिफोल्ड पर, हम एक मौलिक 2-फॉर्म (या कोसिम्प्लेक्टिक संरचना) पेश कर सकते हैं जो केवल चुने हुए मीट्रिक और [[लगभग जटिल संरचना]] पर निर्भर करता है। यह स्वरूप सदैव अनित्य होता है। अतिरिक्त अभिन्नता की स्थिति के साथ कि यह बंद है (यानी, यह एक सहानुभूतिपूर्ण रूप है), हमें लगभग काहलर संरचना मिलती है। यदि लगभग जटिल संरचना और मौलिक रूप दोनों एकीकृत हैं, तो हमारे पास काहलर संरचना है।
किसी भी लगभग हर्मिटियन मैनिफोल्ड पर, हम एक मौलिक 2-फॉर्म (या कोसिम्प्लेक्टिक संरचना) पेश कर सकते हैं जो केवल चुने हुए मापीय और [[लगभग जटिल संरचना]] पर निर्भर करता है। यह स्वरूप सदैव अनित्य होता है। अतिरिक्त अभिन्नता की स्थिति के साथ कि यह बंद है (यानी, यह एक सहानुभूतिपूर्ण रूप है), हमें लगभग काहलर संरचना मिलती है। यदि लगभग जटिल संरचना और मौलिक रूप दोनों एकीकृत हैं, तो हमारे पास काहलर संरचना है।


==औपचारिक परिभाषा==
==औपचारिक परिभाषा==


एक चिकनी मैनिफोल्ड ''एम'' के ऊपर एक [[जटिल वेक्टर बंडल]] ''ई'' पर एक हर्मिटियन मीट्रिक प्रत्येक फाइबर पर एक सुचारु रूप से भिन्न निश्चित बिलिनियर फॉर्म | सकारात्मक-निश्चित हर्मिटियन रूप है। इस तरह के मीट्रिक को वेक्टर बंडल के एक सुचारु वैश्विक खंड ''एच'' के रूप में देखा जा सकता है <math>(E\otimes\bar E)^*</math> इस प्रकार कि M में प्रत्येक बिंदु p के लिए,
एक चिकनी मैनिफोल्ड ''एम'' के ऊपर एक [[जटिल वेक्टर बंडल]] ''ई'' पर एक हर्मिटियन मापीय प्रत्येक फाइबर पर एक सुचारु रूप से भिन्न निश्चित बिलिनियर फॉर्म | सकारात्मक-निश्चित हर्मिटियन रूप है। इस तरह के मापीय को वेक्टर बंडल के एक सुचारु वैश्विक खंड ''एच'' के रूप में देखा जा सकता है <math>(E\otimes\bar E)^*</math> इस प्रकार कि M में प्रत्येक बिंदु p के लिए,
<math display="block">h_p\mathord{\left(\eta, \bar\zeta\right)} = \overline{h_p\mathord{\left(\zeta, \bar\eta\right)}}</math>
<math display="block">h_p\mathord{\left(\eta, \bar\zeta\right)} = \overline{h_p\mathord{\left(\zeta, \bar\eta\right)}}</math>
सभी के लिए {{mvar|ζ}}, {{mvar|η}}फाइबर ई में<sub>''p''</sub> और
सभी के लिए {{mvar|ζ}}, {{mvar|η}}फाइबर ई में<sub>''p''</sub> और
<math display="block">h_p\mathord{\left(\zeta, \bar\zeta\right)} > 0</math>
<math display="block">h_p\mathord{\left(\zeta, \bar\zeta\right)} > 0</math>
सभी गैरशून्य के लिए {{mvar|ζ}}ई में<sub>''p''</sub>.
सभी गैरशून्य के लिए {{mvar|ζ}}ई में<sub>''p''</sub>.


हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसके [[होलोमोर्फिक स्पर्शरेखा बंडल]] पर हर्मिटियन मीट्रिक होता है। इसी तरह, एक लगभग हर्मिटियन मैनिफोल्ड अपने होलोमोर्फिक स्पर्शरेखा बंडल पर एक हर्मिटियन मीट्रिक के साथ लगभग एक जटिल मैनिफोल्ड है।
हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसके [[होलोमोर्फिक स्पर्शरेखा बंडल]] पर हर्मिटियन मापीय होता है। इसी तरह, एक लगभग हर्मिटियन मैनिफोल्ड अपने होलोमोर्फिक स्पर्शरेखा बंडल पर एक हर्मिटियन मापीय के साथ लगभग एक जटिल मैनिफोल्ड है।


हर्मिटियन मैनिफ़ोल्ड पर मीट्रिक को स्थानीय होलोमोर्फिक निर्देशांक (''z'') में लिखा जा सकता है<sup>a</sup>) जैसे
हर्मिटियन मैनिफ़ोल्ड पर मापीय को स्थानीय होलोमोर्फिक निर्देशांक (''z'') में लिखा जा सकता है<sup>a</sup>) जैसे
<math display="block">h = h_{\alpha\bar\beta}\,dz^\alpha \otimes d\bar z^\beta</math>
<math display="block">h = h_{\alpha\bar\beta}\,dz^\alpha \otimes d\bar z^\beta</math>
कहाँ <math>h_{\alpha\bar\beta}</math> एक सकारात्मक-निश्चित [[हर्मिटियन मैट्रिक्स]] के घटक हैं।
कहाँ <math>h_{\alpha\bar\beta}</math> एक सकारात्मक-निश्चित [[हर्मिटियन मैट्रिक्स]] के घटक हैं।


==रीमैनियन मीट्रिक और संबंधित फॉर्म==
==रीमैनियन मापीय और संबंधित फॉर्म==


एक (लगभग) जटिल मैनिफोल्ड एम पर एक हर्मिटियन मीट्रिक एच अंतर्निहित चिकनी मैनिफोल्ड पर एक रीमैनियन मीट्रिक जी को परिभाषित करता है। मीट्रिक g को h के वास्तविक भाग के रूप में परिभाषित किया गया है:
एक (लगभग) जटिल मैनिफोल्ड एम पर एक हर्मिटियन मापीय एच अंतर्निहित चिकनी मैनिफोल्ड पर एक रीमैनियन मापीय जी को परिभाषित करता है। मापीय g को h के वास्तविक भाग के रूप में परिभाषित किया गया है:
<math display="block">g = {1 \over 2}\left(h + \bar h\right).</math>
<math display="block">g = {1 \over 2}\left(h + \bar h\right).</math>
प्रपत्र g, TM पर एक सममित द्विरेखीय रूप है<sup>सी</sup>, [[जटिल]] स्पर्शरेखा बंडल। चूँकि ''g'' इसके संयुग्म के बराबर है, यह ''TM'' पर वास्तविक रूप का जटिलीकरण है। ''TM'' पर ''g'' की समरूपता और सकारात्मक-निश्चितता ''h'' के संगत गुणों से अनुसरण करती है। स्थानीय होलोमोर्फिक निर्देशांक में मीट्रिक ''जी'' लिखा जा सकता है
प्रपत्र g, TM पर एक सममित द्विरेखीय रूप है<sup>सी</sup>, [[जटिल]] स्पर्शरेखा बंडल। चूँकि ''g'' इसके संयुग्म के बराबर है, यह ''TM'' पर वास्तविक रूप का जटिलीकरण है। ''TM'' पर ''g'' की समरूपता और सकारात्मक-निश्चितता ''h'' के संगत गुणों से अनुसरण करती है। स्थानीय होलोमोर्फिक निर्देशांक में मापीय ''जी'' लिखा जा सकता है
<math display="block">g = {1 \over 2}h_{\alpha\bar\beta}\,\left(dz^\alpha\otimes d\bar z^\beta + d\bar z^\beta\otimes dz^\alpha\right).</math>
<math display="block">g = {1 \over 2}h_{\alpha\bar\beta}\,\left(dz^\alpha\otimes d\bar z^\beta + d\bar z^\beta\otimes dz^\alpha\right).</math>
कोई h को डिग्री (1,1) के एक जटिल अंतर रूप ω से भी जोड़ सकता है। प्रपत्र ω को h के काल्पनिक भाग को घटाकर परिभाषित किया गया है:
कोई h को डिग्री (1,1) के एक जटिल अंतर रूप ω से भी जोड़ सकता है। प्रपत्र ω को h के काल्पनिक भाग को घटाकर परिभाषित किया गया है:
Line 31: Line 30:
पुनः चूँकि ω इसके संयुग्म के बराबर है, यह TM पर एक वास्तविक रूप की जटिलता है। फॉर्म ω को विभिन्न रूप से 'संबद्ध (1,1) फॉर्म', 'मौलिक रूप' या 'हर्मिटियन फॉर्म' कहा जाता है। स्थानीय होलोमोर्फिक निर्देशांक में ω लिखा जा सकता है
पुनः चूँकि ω इसके संयुग्म के बराबर है, यह TM पर एक वास्तविक रूप की जटिलता है। फॉर्म ω को विभिन्न रूप से 'संबद्ध (1,1) फॉर्म', 'मौलिक रूप' या 'हर्मिटियन फॉर्म' कहा जाता है। स्थानीय होलोमोर्फिक निर्देशांक में ω लिखा जा सकता है
<math display="block">\omega = {i \over 2}h_{\alpha\bar\beta}\,dz^\alpha\wedge d\bar z^\beta.</math>
<math display="block">\omega = {i \over 2}h_{\alpha\bar\beta}\,dz^\alpha\wedge d\bar z^\beta.</math>
समन्वय निरूपण से यह स्पष्ट है कि तीनों में से कोई एक बनता है {{math|''h''}}, {{math|''g''}}, और {{math|''ω''}} अन्य दो को विशिष्ट रूप से निर्धारित करें। रीमैनियन मीट्रिक {{math|''g''}} और संबद्ध (1,1) प्रपत्र {{math|''ω''}} लगभग जटिल संरचना से संबंधित हैं {{math|''J''}} निम्नलिखित नुसार
समन्वय निरूपण से यह स्पष्ट है कि तीनों में से कोई एक बनता है {{math|''h''}}, {{math|''g''}}, और {{math|''ω''}} अन्य दो को विशिष्ट रूप से निर्धारित करें। रीमैनियन मापीय {{math|''g''}} और संबद्ध (1,1) प्रपत्र {{math|''ω''}} लगभग जटिल संरचना से संबंधित हैं {{math|''J''}} निम्नलिखित नुसार
<math display="block">\begin{align}
<math display="block">\begin{align}
   \omega(u, v) &= g(Ju, v)\\
   \omega(u, v) &= g(Ju, v)\\
   g(u, v) &= \omega(u, Jv)
   g(u, v) &= \omega(u, Jv)
\end{align}</math>
\end{align}</math>
सभी जटिल स्पर्शरेखा सदिशों के लिए {{mvar|u}} और {{mvar|v}}. हर्मिटियन मीट्रिक {{math|''h''}} से पुनर्प्राप्त किया जा सकता है {{math|''g''}} और {{math|''ω''}}पहचान के माध्यम से
सभी जटिल स्पर्शरेखा सदिशों के लिए {{mvar|u}} और {{mvar|v}}. हर्मिटियन मापीय {{math|''h''}} से पुनर्प्राप्त किया जा सकता है {{math|''g''}} और {{math|''ω''}}पहचान के माध्यम से
<math display="block">h = g - i\omega.</math>
<math display="block">h = g - i\omega.</math>
सभी तीन रूप h, g, और ω लगभग जटिल संरचना को संरक्षित करते हैं {{math|''J''}}. वह है,
सभी तीन रूप h, g, और ω लगभग जटिल संरचना को संरक्षित करते हैं {{math|''J''}}. वह है,
Line 47: Line 46:


(लगभग) जटिल मैनिफोल्ड पर एक हर्मिटियन संरचना {{math|''M''}} इसलिए दोनों में से किसी एक द्वारा निर्दिष्ट किया जा सकता है
(लगभग) जटिल मैनिफोल्ड पर एक हर्मिटियन संरचना {{math|''M''}} इसलिए दोनों में से किसी एक द्वारा निर्दिष्ट किया जा सकता है
# एक हर्मिटियन मीट्रिक {{math|''h''}} ऊपरोक्त अनुसार,
# एक हर्मिटियन मापीय {{math|''h''}} ऊपरोक्त अनुसार,
# एक रीमैनियन मीट्रिक {{math|''g''}} जो लगभग जटिल संरचना को सुरक्षित रखता है {{math|''J''}}, या
# एक रीमैनियन मापीय {{math|''g''}} जो लगभग जटिल संरचना को सुरक्षित रखता है {{math|''J''}}, या
# एक [[अविक्षिप्त रूप]] 2-रूप {{math|''ω''}} जो सुरक्षित रखता है {{math|''J''}} और इस अर्थ में सकारात्मक-निश्चित है {{math|''ω''(''u'', ''Ju'') > 0}} सभी अशून्य वास्तविक स्पर्शरेखा सदिशों के लिए {{math|''u''}}.
# एक [[अविक्षिप्त रूप]] 2-रूप {{math|''ω''}} जो सुरक्षित रखता है {{math|''J''}} और इस अर्थ में सकारात्मक-निश्चित है {{math|''ω''(''u'', ''Ju'') > 0}} सभी अशून्य वास्तविक स्पर्शरेखा सदिशों के लिए {{math|''u''}}.


ध्यान दें कि कई लेखक कॉल करते हैं {{math|''g''}} स्वयं हर्मिटियन मीट्रिक।
ध्यान दें कि कई लेखक कॉल करते हैं {{math|''g''}} स्वयं हर्मिटियन मापीय।


==गुण==
==गुण==


प्रत्येक (लगभग) जटिल मैनिफोल्ड एक हर्मिटियन मीट्रिक को स्वीकार करता है। यह रीमैनियन मीट्रिक के अनुरूप कथन से सीधे अनुसरण करता है। लगभग जटिल मैनिफ़ोल्ड M पर एक मनमाना रीमैनियन मीट्रिक g को देखते हुए, कोई स्पष्ट तरीके से लगभग जटिल संरचना J के साथ संगत एक नया मीट्रिक g′ बना सकता है:
प्रत्येक (लगभग) जटिल मैनिफोल्ड एक हर्मिटियन मापीय को स्वीकार करता है। यह रीमैनियन मापीय के अनुरूप कथन से सीधे अनुसरण करता है। लगभग जटिल मैनिफ़ोल्ड M पर एक मनमाना रीमैनियन मापीय g को देखते हुए, कोई स्पष्ट तरीके से लगभग जटिल संरचना J के साथ संगत एक नया मापीय g′ बना सकता है:
<math display="block">g'(u, v) = {1 \over 2}\left(g(u, v) + g(Ju, Jv)\right).</math>
<math display="block">g'(u, v) = {1 \over 2}\left(g(u, v) + g(Ju, Jv)\right).</math>
लगभग जटिल मैनिफोल्ड एम पर एक हर्मिटियन मीट्रिक चुनना एम पर जी-संरचना|यू(एन)-संरचना की पसंद के बराबर है; अर्थात्, एम के [[ फ़्रेम बंडल ]] के संरचना समूह की जीएल(एन, 'सी') से [[एकात्मक समूह]] यू(एन) में कमी। लगभग हर्मिटियन मैनिफोल्ड पर एक 'एकात्मक फ्रेम' जटिल रैखिक फ्रेम है जो हर्मिटियन मीट्रिक के संबंध में लम्बवत है। एम का [[एकात्मक फ्रेम बंडल]] सभी एकात्मक फ्रेमों का प्रमुख बंडल|प्रमुख यू(एन)-बंडल है।
लगभग जटिल मैनिफोल्ड एम पर एक हर्मिटियन मापीय चुनना एम पर जी-संरचना|यू(एन)-संरचना की पसंद के बराबर है; अर्थात्, एम के [[ फ़्रेम बंडल ]] के संरचना समूह की जीएल(एन, 'सी') से [[एकात्मक समूह]] यू(एन) में कमी। लगभग हर्मिटियन मैनिफोल्ड पर एक 'एकात्मक फ्रेम' जटिल रैखिक फ्रेम है जो हर्मिटियन मापीय के संबंध में लम्बवत है। एम का [[एकात्मक फ्रेम बंडल]] सभी एकात्मक फ्रेमों का प्रमुख बंडल|प्रमुख यू(एन)-बंडल है।


प्रत्येक लगभग हर्मिटियन मैनिफोल्ड एम में एक कैनोनिकल [[वॉल्यूम फॉर्म]] होता है जो जी द्वारा निर्धारित [[रीमैनियन वॉल्यूम फॉर्म]] होता है। यह फॉर्म संबद्ध (1,1)-फॉर्म के संदर्भ में दिया गया है {{math|''ω''}} द्वारा
प्रत्येक लगभग हर्मिटियन मैनिफोल्ड एम में एक कैनोनिकल [[वॉल्यूम फॉर्म]] होता है जो जी द्वारा निर्धारित [[रीमैनियन वॉल्यूम फॉर्म]] होता है। यह फॉर्म संबद्ध (1,1)-फॉर्म के संदर्भ में दिया गया है {{math|''ω''}} द्वारा
Line 63: Line 62:
कहाँ {{math|''ω''<sup>''n''</sup>}} का वेज उत्पाद है {{math|''ω''}} अपने आप से {{mvar|n}} बार. इसलिए वॉल्यूम फॉर्म एम पर एक वास्तविक (एन, एन)-फॉर्म है। स्थानीय होलोमोर्फिक निर्देशांक में वॉल्यूम फॉर्म इस प्रकार दिया गया है
कहाँ {{math|''ω''<sup>''n''</sup>}} का वेज उत्पाद है {{math|''ω''}} अपने आप से {{mvar|n}} बार. इसलिए वॉल्यूम फॉर्म एम पर एक वास्तविक (एन, एन)-फॉर्म है। स्थानीय होलोमोर्फिक निर्देशांक में वॉल्यूम फॉर्म इस प्रकार दिया गया है
<math display="block">\mathrm{vol}_M = \left(\frac{i}{2}\right)^n \det\left(h_{\alpha\bar\beta}\right)\, dz^1 \wedge d\bar z^1 \wedge \dotsb \wedge dz^n \wedge d\bar z^n.</math>
<math display="block">\mathrm{vol}_M = \left(\frac{i}{2}\right)^n \det\left(h_{\alpha\bar\beta}\right)\, dz^1 \wedge d\bar z^1 \wedge \dotsb \wedge dz^n \wedge d\bar z^n.</math>
कोई [[होलोमोर्फिक वेक्टर बंडल]] पर एक हर्मिटियन मीट्रिक पर भी विचार कर सकता है।
कोई [[होलोमोर्फिक वेक्टर बंडल]] पर एक हर्मिटियन मापीय पर भी विचार कर सकता है।


==काहलर मैनिफोल्ड्स==
==काहलर मैनिफोल्ड्स==

Revision as of 21:46, 7 July 2023

गणित में, और अधिक विशेष रूप से विभेदक ज्यामिति में, एक हर्मिटियन मैनिफोल्ड रीमैनियन मैनिफोल्ड का जटिल अनुरूप है। अधिक सटीक रूप से, एक हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसमें प्रत्येक (पूर्णसममितिक) स्पर्शी समष्टि पर एक सुचारु रूप से भिन्न हर्मिटियन रूप आंतरिक उत्पाद होता है। कोई हर्मिटियन मैनिफोल्ड को रीमैनियन मापीय के साथ वास्तविक मैनिफोल्ड के रूप में भी परिभाषित कर सकता है जो जटिल अनेक गुना को संरक्षित करता है।

एक जटिल संरचना अनिवार्य रूप से एक अभिन्नता स्थिति के साथ लगभग एक जटिल संरचना है, और यह स्थिति कई गुना पर एक एकात्मक संरचना (जी-संरचना | यू (एन) संरचना) उत्पन्न करती है। इस स्थिति को छोड़ने पर, हमें लगभग हर्मिटियन मैनिफोल्ड प्राप्त होता है।

किसी भी लगभग हर्मिटियन मैनिफोल्ड पर, हम एक मौलिक 2-फॉर्म (या कोसिम्प्लेक्टिक संरचना) पेश कर सकते हैं जो केवल चुने हुए मापीय और लगभग जटिल संरचना पर निर्भर करता है। यह स्वरूप सदैव अनित्य होता है। अतिरिक्त अभिन्नता की स्थिति के साथ कि यह बंद है (यानी, यह एक सहानुभूतिपूर्ण रूप है), हमें लगभग काहलर संरचना मिलती है। यदि लगभग जटिल संरचना और मौलिक रूप दोनों एकीकृत हैं, तो हमारे पास काहलर संरचना है।

औपचारिक परिभाषा

एक चिकनी मैनिफोल्ड एम के ऊपर एक जटिल वेक्टर बंडल पर एक हर्मिटियन मापीय प्रत्येक फाइबर पर एक सुचारु रूप से भिन्न निश्चित बिलिनियर फॉर्म | सकारात्मक-निश्चित हर्मिटियन रूप है। इस तरह के मापीय को वेक्टर बंडल के एक सुचारु वैश्विक खंड एच के रूप में देखा जा सकता है इस प्रकार कि M में प्रत्येक बिंदु p के लिए,

सभी के लिए ζ, ηफाइबर ई मेंp और
सभी गैरशून्य के लिए ζई मेंp.

हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसके होलोमोर्फिक स्पर्शरेखा बंडल पर हर्मिटियन मापीय होता है। इसी तरह, एक लगभग हर्मिटियन मैनिफोल्ड अपने होलोमोर्फिक स्पर्शरेखा बंडल पर एक हर्मिटियन मापीय के साथ लगभग एक जटिल मैनिफोल्ड है।

हर्मिटियन मैनिफ़ोल्ड पर मापीय को स्थानीय होलोमोर्फिक निर्देशांक (z) में लिखा जा सकता हैa) जैसे

कहाँ एक सकारात्मक-निश्चित हर्मिटियन मैट्रिक्स के घटक हैं।

रीमैनियन मापीय और संबंधित फॉर्म

एक (लगभग) जटिल मैनिफोल्ड एम पर एक हर्मिटियन मापीय एच अंतर्निहित चिकनी मैनिफोल्ड पर एक रीमैनियन मापीय जी को परिभाषित करता है। मापीय g को h के वास्तविक भाग के रूप में परिभाषित किया गया है:

प्रपत्र g, TM पर एक सममित द्विरेखीय रूप हैसी, जटिल स्पर्शरेखा बंडल। चूँकि g इसके संयुग्म के बराबर है, यह TM पर वास्तविक रूप का जटिलीकरण है। TM पर g की समरूपता और सकारात्मक-निश्चितता h के संगत गुणों से अनुसरण करती है। स्थानीय होलोमोर्फिक निर्देशांक में मापीय जी लिखा जा सकता है
कोई h को डिग्री (1,1) के एक जटिल अंतर रूप ω से भी जोड़ सकता है। प्रपत्र ω को h के काल्पनिक भाग को घटाकर परिभाषित किया गया है:
पुनः चूँकि ω इसके संयुग्म के बराबर है, यह TM पर एक वास्तविक रूप की जटिलता है। फॉर्म ω को विभिन्न रूप से 'संबद्ध (1,1) फॉर्म', 'मौलिक रूप' या 'हर्मिटियन फॉर्म' कहा जाता है। स्थानीय होलोमोर्फिक निर्देशांक में ω लिखा जा सकता है
समन्वय निरूपण से यह स्पष्ट है कि तीनों में से कोई एक बनता है h, g, और ω अन्य दो को विशिष्ट रूप से निर्धारित करें। रीमैनियन मापीय g और संबद्ध (1,1) प्रपत्र ω लगभग जटिल संरचना से संबंधित हैं J निम्नलिखित नुसार
सभी जटिल स्पर्शरेखा सदिशों के लिए u और v. हर्मिटियन मापीय h से पुनर्प्राप्त किया जा सकता है g और ωपहचान के माध्यम से
सभी तीन रूप h, g, और ω लगभग जटिल संरचना को संरक्षित करते हैं J. वह है,
सभी जटिल स्पर्शरेखा सदिशों के लिए u और v.

(लगभग) जटिल मैनिफोल्ड पर एक हर्मिटियन संरचना M इसलिए दोनों में से किसी एक द्वारा निर्दिष्ट किया जा सकता है

  1. एक हर्मिटियन मापीय h ऊपरोक्त अनुसार,
  2. एक रीमैनियन मापीय g जो लगभग जटिल संरचना को सुरक्षित रखता है J, या
  3. एक अविक्षिप्त रूप 2-रूप ω जो सुरक्षित रखता है J और इस अर्थ में सकारात्मक-निश्चित है ω(u, Ju) > 0 सभी अशून्य वास्तविक स्पर्शरेखा सदिशों के लिए u.

ध्यान दें कि कई लेखक कॉल करते हैं g स्वयं हर्मिटियन मापीय।

गुण

प्रत्येक (लगभग) जटिल मैनिफोल्ड एक हर्मिटियन मापीय को स्वीकार करता है। यह रीमैनियन मापीय के अनुरूप कथन से सीधे अनुसरण करता है। लगभग जटिल मैनिफ़ोल्ड M पर एक मनमाना रीमैनियन मापीय g को देखते हुए, कोई स्पष्ट तरीके से लगभग जटिल संरचना J के साथ संगत एक नया मापीय g′ बना सकता है:

लगभग जटिल मैनिफोल्ड एम पर एक हर्मिटियन मापीय चुनना एम पर जी-संरचना|यू(एन)-संरचना की पसंद के बराबर है; अर्थात्, एम के फ़्रेम बंडल के संरचना समूह की जीएल(एन, 'सी') से एकात्मक समूह यू(एन) में कमी। लगभग हर्मिटियन मैनिफोल्ड पर एक 'एकात्मक फ्रेम' जटिल रैखिक फ्रेम है जो हर्मिटियन मापीय के संबंध में लम्बवत है। एम का एकात्मक फ्रेम बंडल सभी एकात्मक फ्रेमों का प्रमुख बंडल|प्रमुख यू(एन)-बंडल है।

प्रत्येक लगभग हर्मिटियन मैनिफोल्ड एम में एक कैनोनिकल वॉल्यूम फॉर्म होता है जो जी द्वारा निर्धारित रीमैनियन वॉल्यूम फॉर्म होता है। यह फॉर्म संबद्ध (1,1)-फॉर्म के संदर्भ में दिया गया है ω द्वारा

कहाँ ωn का वेज उत्पाद है ω अपने आप से n बार. इसलिए वॉल्यूम फॉर्म एम पर एक वास्तविक (एन, एन)-फॉर्म है। स्थानीय होलोमोर्फिक निर्देशांक में वॉल्यूम फॉर्म इस प्रकार दिया गया है
कोई होलोमोर्फिक वेक्टर बंडल पर एक हर्मिटियन मापीय पर भी विचार कर सकता है।

काहलर मैनिफोल्ड्स

हर्मिटियन मैनिफोल्ड्स का सबसे महत्वपूर्ण वर्ग काहलर मैनिफोल्ड्स हैं। ये हर्मिटियन मैनिफ़ोल्ड हैं जिनके लिए हर्मिटियन रूप है ω बंद विभेदक रूप है:

इस मामले में फॉर्म ω को काहलर फॉर्म कहा जाता है। काहलर रूप एक सहानुभूतिपूर्ण रूप है, और इसलिए काहलर मैनिफोल्ड्स स्वाभाविक रूप से सहानुभूतिपूर्ण मैनिफोल्ड्स हैं।

एक लगभग हर्मिटियन मैनिफोल्ड जिसका संबद्ध (1,1)-रूप बंद है, स्वाभाविक रूप से लगभग काहलर मैनिफोल्ड कहलाता है। कोई भी सिंपलेक्टिक मैनिफ़ोल्ड एक संगत लगभग जटिल संरचना को स्वीकार करता है जो इसे लगभग काहलर मैनिफोल्ड में बनाता है।

अभिन्नता

काहलर मैनिफोल्ड एक लगभग हर्मिटियन मैनिफोल्ड है जो एक अभिन्नता की स्थिति को संतुष्ट करता है। इसे कई समान तरीकों से कहा जा सकता है।

होने देना (M, g, ω, J) वास्तविक आयाम का लगभग हर्मिटियन मैनिफोल्ड हो 2n और जाने का लेवी-सिविटा कनेक्शन हो g. निम्नलिखित के लिए समतुल्य शर्तें हैं M काहलर बनना:

  • ω बंद है और J अभिन्न है,
  • J = 0,
  • ∇ω = 0,
  • का होलोनोमी समूह एकात्मक समूह में समाहित है U(n) के लिए जुड़े J,

इन स्थितियों की समतुल्यता एकात्मक समूह की एकात्मक समूह#2-आउट-ऑफ़-3 संपत्ति संपत्ति से मेल खाती है।

विशेषकर, यदि M एक हर्मिटियन मैनिफोल्ड है, स्थिति dω = 0 स्पष्ट रूप से बहुत मजबूत स्थितियों के बराबर है ω = ∇J = 0. काहलर सिद्धांत की समृद्धि आंशिक रूप से इन गुणों के कारण है।

संदर्भ

  • Griffiths, Phillip; Joseph Harris (1994) [1978]. Principles of Algebraic Geometry. Wiley Classics Library. New York: Wiley-Interscience. ISBN 0-471-05059-8.
  • Kobayashi, Shoshichi; Katsumi Nomizu (1996) [1963]. Foundations of Differential Geometry, Vol. 2. Wiley Classics Library. New York: Wiley Interscience. ISBN 0-471-15732-5.
  • Kodaira, Kunihiko (1986). Complex Manifolds and Deformation of Complex Structures. Classics in Mathematics. New York: Springer. ISBN 3-540-22614-1.