हर्मिटियन मैनिफोल्ड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 8: Line 8:
==औपचारिक परिभाषा==
==औपचारिक परिभाषा==


एक चिकनी मैनिफोल्ड ''एम'' के ऊपर एक [[जटिल वेक्टर बंडल]] ''ई'' पर एक हर्मिटियन मापीय प्रत्येक फाइबर पर एक सुचारु रूप से भिन्न निश्चित बिलिनियर फॉर्म | सकारात्मक-निश्चित हर्मिटियन रूप है। इस तरह के मापीय को वेक्टर बंडल के एक सुचारु वैश्विक खंड ''एच'' के रूप में देखा जा सकता है <math>(E\otimes\bar E)^*</math> इस प्रकार कि M में प्रत्येक बिंदु p के लिए,
एक [[समतल मैनिफोल्ड]] M के ऊपर एक [[जटिल वेक्टर बंडल|जटिल सदिश बंडल]] E पर एक हर्मिटियन मापीय प्रत्येक फाइबर पर एक सुचारु रूप से भिन्न [[सकारात्मक-निश्चित हर्मिटियन रूप]] है। इस तरह के मापीय को सदिश बंडल <math>(E\otimes\bar E)^*</math>के एक सुचारु वैश्विक खंड h के रूप में देखा जा सकता है जैसे कि M में प्रत्येक बिंदु p के लिए,
<math display="block">h_p\mathord{\left(\eta, \bar\zeta\right)} = \overline{h_p\mathord{\left(\zeta, \bar\eta\right)}}</math>
सभी के लिए {{mvar|ζ}}, {{mvar|η}}फाइबर ई में<sub>''p''</sub> और
<math display="block">h_p\mathord{\left(\zeta, \bar\zeta\right)} > 0</math>
सभी गैरशून्य के लिए {{mvar|ζ}}ई में<sub>''p''</sub>.


हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसके [[होलोमोर्फिक स्पर्शरेखा बंडल]] पर हर्मिटियन मापीय होता है। इसी तरह, एक लगभग हर्मिटियन मैनिफोल्ड अपने होलोमोर्फिक स्पर्शरेखा बंडल पर एक हर्मिटियन मापीय के साथ लगभग एक जटिल मैनिफोल्ड है।
सभी {{mvar|ζ}} के लिए <math display="block">h_p\mathord{\left(\eta, \bar\zeta\right)} = \overline{h_p\mathord{\left(\zeta, \bar\eta\right)}}</math>
, फाइबर E<sub>''p''</sub> में {{mvar|η}} और E<sub>''p''</sub> में सभी गैर-शून्य {{mvar|ζ}} के लिए<math display="block">h_p\mathord{\left(\zeta, \bar\zeta\right)} > 0</math>होता है।


हर्मिटियन मैनिफ़ोल्ड पर मापीय को स्थानीय होलोमोर्फिक निर्देशांक (''z'') में लिखा जा सकता है<sup>a</sup>) जैसे
<math display="block">h = h_{\alpha\bar\beta}\,dz^\alpha \otimes d\bar z^\beta</math>
कहाँ <math>h_{\alpha\bar\beta}</math> एक सकारात्मक-निश्चित [[हर्मिटियन मैट्रिक्स]] के घटक हैं।


'''हर्मिटियन मैनिफोल्ड''' एक [[जटिल मैनिफोल्ड]] है जिसके [[होलोमोर्फिक स्पर्शरेखा बंडल|पूर्णसममितिक स्पर्शरेखा बंडल]] पर हर्मिटियन मापीय होता है। इसी तरह, एक '''लगभग हर्मिटियन मैनिफोल्ड''' अपने पूर्णसममितिक स्पर्शरेखा बंडल पर एक हर्मिटियन मापीय के साथ [[लगभग एक जटिल मैनिफोल्ड]] है।
हर्मिटियन मैनिफ़ोल्ड पर मापीय को स्थानीय पूर्णसममितिक निर्देशांक (''z<sup>a</sup>'') में
<math display="block">h = h_{\alpha\bar\beta}\,dz^\alpha \otimes d\bar z^\beta</math>के रूप में लिखा जा सकता है जहां <math>h_{\alpha\bar\beta}</math> एक सकारात्मक-निश्चित [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]] के घटक हैं।
==रीमैनियन मापीय और संबंधित फॉर्म==
==रीमैनियन मापीय और संबंधित फॉर्म==


एक (लगभग) जटिल मैनिफोल्ड एम पर एक हर्मिटियन मापीय एच अंतर्निहित चिकनी मैनिफोल्ड पर एक रीमैनियन मापीय जी को परिभाषित करता है। मापीय g को h के वास्तविक भाग के रूप में परिभाषित किया गया है:
एक (लगभग) जटिल मैनिफोल्ड एम पर एक हर्मिटियन मापीय एच अंतर्निहित समतल मैनिफोल्ड पर एक रीमैनियन मापीय जी को परिभाषित करता है। मापीय g को h के वास्तविक भाग के रूप में परिभाषित किया गया है:
<math display="block">g = {1 \over 2}\left(h + \bar h\right).</math>
<math display="block">g = {1 \over 2}\left(h + \bar h\right).</math>
प्रपत्र g, TM पर एक सममित द्विरेखीय रूप है<sup>सी</sup>, [[जटिल]] स्पर्शरेखा बंडल। चूँकि ''g'' इसके संयुग्म के बराबर है, यह ''TM'' पर वास्तविक रूप का जटिलीकरण है। ''TM'' पर ''g'' की समरूपता और सकारात्मक-निश्चितता ''h'' के संगत गुणों से अनुसरण करती है। स्थानीय होलोमोर्फिक निर्देशांक में मापीय ''जी'' लिखा जा सकता है
प्रपत्र g, TM पर एक सममित द्विरेखीय रूप है<sup>सी</sup>, [[जटिल]] स्पर्शरेखा बंडल। चूँकि ''g'' इसके संयुग्म के बराबर है, यह ''TM'' पर वास्तविक रूप का जटिलीकरण है। ''TM'' पर ''g'' की समरूपता और सकारात्मक-निश्चितता ''h'' के संगत गुणों से अनुसरण करती है। स्थानीय पूर्णसममितिक निर्देशांक में मापीय ''जी'' लिखा जा सकता है
<math display="block">g = {1 \over 2}h_{\alpha\bar\beta}\,\left(dz^\alpha\otimes d\bar z^\beta + d\bar z^\beta\otimes dz^\alpha\right).</math>
<math display="block">g = {1 \over 2}h_{\alpha\bar\beta}\,\left(dz^\alpha\otimes d\bar z^\beta + d\bar z^\beta\otimes dz^\alpha\right).</math>
कोई h को डिग्री (1,1) के एक जटिल अंतर रूप ω से भी जोड़ सकता है। प्रपत्र ω को h के काल्पनिक भाग को घटाकर परिभाषित किया गया है:
कोई h को डिग्री (1,1) के एक जटिल अंतर रूप ω से भी जोड़ सकता है। प्रपत्र ω को h के काल्पनिक भाग को घटाकर परिभाषित किया गया है:
<math display="block">\omega = {i \over 2}\left(h - \bar h\right).</math>
<math display="block">\omega = {i \over 2}\left(h - \bar h\right).</math>
पुनः चूँकि ω इसके संयुग्म के बराबर है, यह TM पर एक वास्तविक रूप की जटिलता है। फॉर्म ω को विभिन्न रूप से 'संबद्ध (1,1) फॉर्म', 'मूल रूप' या 'हर्मिटियन फॉर्म' कहा जाता है। स्थानीय होलोमोर्फिक निर्देशांक में ω लिखा जा सकता है
पुनः चूँकि ω इसके संयुग्म के बराबर है, यह TM पर एक वास्तविक रूप की जटिलता है। फॉर्म ω को विभिन्न रूप से 'संबद्ध (1,1) फॉर्म', 'मूल रूप' या 'हर्मिटियन फॉर्म' कहा जाता है। स्थानीय पूर्णसममितिक निर्देशांक में ω लिखा जा सकता है
<math display="block">\omega = {i \over 2}h_{\alpha\bar\beta}\,dz^\alpha\wedge d\bar z^\beta.</math>
<math display="block">\omega = {i \over 2}h_{\alpha\bar\beta}\,dz^\alpha\wedge d\bar z^\beta.</math>
समन्वय निरूपण से यह स्पष्ट है कि तीनों में से कोई एक बनता है {{math|''h''}}, {{math|''g''}}, और {{math|''ω''}} अन्य दो को विशिष्ट रूप से निर्धारित करें। रीमैनियन मापीय {{math|''g''}} और संबद्ध (1,1) प्रपत्र {{math|''ω''}} लगभग जटिल संरचना से संबंधित हैं {{math|''J''}} निम्नलिखित नुसार
समन्वय निरूपण से यह स्पष्ट है कि तीनों में से कोई एक बनता है {{math|''h''}}, {{math|''g''}}, और {{math|''ω''}} अन्य दो को विशिष्ट रूप से निर्धारित करें। रीमैनियन मापीय {{math|''g''}} और संबद्ध (1,1) प्रपत्र {{math|''ω''}} लगभग जटिल संरचना से संबंधित हैं {{math|''J''}} निम्नलिखित नुसार
Line 60: Line 58:
प्रत्येक लगभग हर्मिटियन मैनिफोल्ड एम में एक कैनोनिकल [[वॉल्यूम फॉर्म]] होता है जो जी द्वारा निर्धारित [[रीमैनियन वॉल्यूम फॉर्म]] होता है। यह फॉर्म संबद्ध (1,1)-फॉर्म के संदर्भ में दिया गया है {{math|''ω''}} द्वारा
प्रत्येक लगभग हर्मिटियन मैनिफोल्ड एम में एक कैनोनिकल [[वॉल्यूम फॉर्म]] होता है जो जी द्वारा निर्धारित [[रीमैनियन वॉल्यूम फॉर्म]] होता है। यह फॉर्म संबद्ध (1,1)-फॉर्म के संदर्भ में दिया गया है {{math|''ω''}} द्वारा
<math display="block">\mathrm{vol}_M = \frac{\omega^n}{n!} \in \Omega^{n,n}(M)</math>
<math display="block">\mathrm{vol}_M = \frac{\omega^n}{n!} \in \Omega^{n,n}(M)</math>
कहाँ {{math|''ω''<sup>''n''</sup>}} का वेज उत्पाद है {{math|''ω''}} अपने आप से {{mvar|n}} बार. इसलिए वॉल्यूम फॉर्म एम पर एक वास्तविक (एन, एन)-फॉर्म है। स्थानीय होलोमोर्फिक निर्देशांक में वॉल्यूम फॉर्म इस प्रकार दिया गया है
कहाँ {{math|''ω''<sup>''n''</sup>}} का वेज उत्पाद है {{math|''ω''}} अपने आप से {{mvar|n}} बार. इसलिए वॉल्यूम फॉर्म एम पर एक वास्तविक (एन, एन)-फॉर्म है। स्थानीय पूर्णसममितिक निर्देशांक में वॉल्यूम फॉर्म इस प्रकार दिया गया है
<math display="block">\mathrm{vol}_M = \left(\frac{i}{2}\right)^n \det\left(h_{\alpha\bar\beta}\right)\, dz^1 \wedge d\bar z^1 \wedge \dotsb \wedge dz^n \wedge d\bar z^n.</math>
<math display="block">\mathrm{vol}_M = \left(\frac{i}{2}\right)^n \det\left(h_{\alpha\bar\beta}\right)\, dz^1 \wedge d\bar z^1 \wedge \dotsb \wedge dz^n \wedge d\bar z^n.</math>
कोई [[होलोमोर्फिक वेक्टर बंडल]] पर एक हर्मिटियन मापीय पर भी विचार कर सकता है।
कोई [[होलोमोर्फिक वेक्टर बंडल|पूर्णसममितिक सदिश बंडल]] पर एक हर्मिटियन मापीय पर भी विचार कर सकता है।


==काहलर मैनिफोल्ड्स==
==काहलर मैनिफोल्ड्स==

Revision as of 05:20, 10 July 2023

गणित में, और अधिक विशेष रूप से अवकल ज्यामिति में, एक हर्मिटियन मैनिफोल्ड रीमैनियन मैनिफोल्ड का जटिल अनुरूप है। अधिक सटीक रूप से, एक हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसमें प्रत्येक (पूर्णसममितिक) स्पर्शी समष्टि पर एक सुचारु रूप से भिन्न हर्मिटियन रूप आंतरिक उत्पाद होता है। हर्मिटियन मैनिफोल्ड की एक परिभाषा यह हो सकती है, यह एक वास्तविक मैनिफोल्ड होता है जिसमें एक रीमैनियन मापीय होता है और यह संरचना एक जटिल संरचना होती है।

एक जटिल संरचना अनिवार्य रूप से एक अभिन्नता स्थिति के साथ लगभग एक जटिल संरचना है, और यह स्थिति मैनिफ़ोल्ड पर एक एकात्मक संरचना (यू (एन) संरचना) उत्पन्न करती है। यदि हम इस स्थिति को छोड़ देते हैं, तो हम लगभग हर्मिटियन मैनिफोल्ड प्राप्त करते है।

किसी भी लगभग हर्मिटियन मैनिफोल्ड पर, हम एक मूल 2-रूप (या सहसंसुघटित संरचना) को प्रस्तावित कर सकते हैं जो केवल चयनित मापीय और लगभग जटिल संरचना पर निर्भर करता है। यह रूप सदैव गैर-परिवर्तनीय होता है। अतिरिक्त अभिन्नता की स्थिति के साथ जब यह बंद होता है (अर्थात, यह एक संसुघटित रूप है), तो हम लगभग काहलर संरचना प्राप्त करते है। यदि लगभग जटिल संरचना और मूल रूप दोनों एकीकृत हैं, तो हमारे पास काहलर संरचना है।

औपचारिक परिभाषा

एक समतल मैनिफोल्ड M के ऊपर एक जटिल सदिश बंडल E पर एक हर्मिटियन मापीय प्रत्येक फाइबर पर एक सुचारु रूप से भिन्न सकारात्मक-निश्चित हर्मिटियन रूप है। इस तरह के मापीय को सदिश बंडल के एक सुचारु वैश्विक खंड h के रूप में देखा जा सकता है जैसे कि M में प्रत्येक बिंदु p के लिए,

सभी ζ के लिए

, फाइबर Ep में η और Ep में सभी गैर-शून्य ζ के लिए
होता है।


हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसके पूर्णसममितिक स्पर्शरेखा बंडल पर हर्मिटियन मापीय होता है। इसी तरह, एक लगभग हर्मिटियन मैनिफोल्ड अपने पूर्णसममितिक स्पर्शरेखा बंडल पर एक हर्मिटियन मापीय के साथ लगभग एक जटिल मैनिफोल्ड है।

हर्मिटियन मैनिफ़ोल्ड पर मापीय को स्थानीय पूर्णसममितिक निर्देशांक (za) में

के रूप में लिखा जा सकता है जहां एक सकारात्मक-निश्चित हर्मिटियन आव्यूह के घटक हैं।

रीमैनियन मापीय और संबंधित फॉर्म

एक (लगभग) जटिल मैनिफोल्ड एम पर एक हर्मिटियन मापीय एच अंतर्निहित समतल मैनिफोल्ड पर एक रीमैनियन मापीय जी को परिभाषित करता है। मापीय g को h के वास्तविक भाग के रूप में परिभाषित किया गया है:

प्रपत्र g, TM पर एक सममित द्विरेखीय रूप हैसी, जटिल स्पर्शरेखा बंडल। चूँकि g इसके संयुग्म के बराबर है, यह TM पर वास्तविक रूप का जटिलीकरण है। TM पर g की समरूपता और सकारात्मक-निश्चितता h के संगत गुणों से अनुसरण करती है। स्थानीय पूर्णसममितिक निर्देशांक में मापीय जी लिखा जा सकता है
कोई h को डिग्री (1,1) के एक जटिल अंतर रूप ω से भी जोड़ सकता है। प्रपत्र ω को h के काल्पनिक भाग को घटाकर परिभाषित किया गया है:
पुनः चूँकि ω इसके संयुग्म के बराबर है, यह TM पर एक वास्तविक रूप की जटिलता है। फॉर्म ω को विभिन्न रूप से 'संबद्ध (1,1) फॉर्म', 'मूल रूप' या 'हर्मिटियन फॉर्म' कहा जाता है। स्थानीय पूर्णसममितिक निर्देशांक में ω लिखा जा सकता है
समन्वय निरूपण से यह स्पष्ट है कि तीनों में से कोई एक बनता है h, g, और ω अन्य दो को विशिष्ट रूप से निर्धारित करें। रीमैनियन मापीय g और संबद्ध (1,1) प्रपत्र ω लगभग जटिल संरचना से संबंधित हैं J निम्नलिखित नुसार
सभी जटिल स्पर्शरेखा सदिशों के लिए u और v. हर्मिटियन मापीय h से पुनर्प्राप्त किया जा सकता है g और ωपहचान के माध्यम से
सभी तीन रूप h, g, और ω लगभग जटिल संरचना को संरक्षित करते हैं J. वह है,
सभी जटिल स्पर्शरेखा सदिशों के लिए u और v.

(लगभग) जटिल मैनिफोल्ड पर एक हर्मिटियन संरचना M इसलिए दोनों में से किसी एक द्वारा निर्दिष्ट किया जा सकता है

  1. एक हर्मिटियन मापीय h ऊपरोक्त अनुसार,
  2. एक रीमैनियन मापीय g जो लगभग जटिल संरचना को सुरक्षित रखता है J, या
  3. एक अविक्षिप्त रूप 2-रूप ω जो सुरक्षित रखता है J और इस अर्थ में सकारात्मक-निश्चित है ω(u, Ju) > 0 सभी अशून्य वास्तविक स्पर्शरेखा सदिशों के लिए u.

ध्यान दें कि कई लेखक कॉल करते हैं g स्वयं हर्मिटियन मापीय।

गुण

प्रत्येक (लगभग) जटिल मैनिफोल्ड एक हर्मिटियन मापीय को स्वीकार करता है। यह रीमैनियन मापीय के अनुरूप कथन से सीधे अनुसरण करता है। लगभग जटिल मैनिफ़ोल्ड M पर एक मनमाना रीमैनियन मापीय g को देखते हुए, कोई स्पष्ट तरीके से लगभग जटिल संरचना J के साथ संगत एक नया मापीय g′ बना सकता है:

लगभग जटिल मैनिफोल्ड एम पर एक हर्मिटियन मापीय चुनना एम पर जी-संरचना|यू(एन)-संरचना की पसंद के बराबर है; अर्थात्, एम के फ़्रेम बंडल के संरचना समूह की जीएल(एन, 'सी') से एकात्मक समूह यू(एन) में कमी। लगभग हर्मिटियन मैनिफोल्ड पर एक 'एकात्मक फ्रेम' जटिल रैखिक फ्रेम है जो हर्मिटियन मापीय के संबंध में लम्बवत है। एम का एकात्मक फ्रेम बंडल सभी एकात्मक फ्रेमों का प्रमुख बंडल|प्रमुख यू(एन)-बंडल है।

प्रत्येक लगभग हर्मिटियन मैनिफोल्ड एम में एक कैनोनिकल वॉल्यूम फॉर्म होता है जो जी द्वारा निर्धारित रीमैनियन वॉल्यूम फॉर्म होता है। यह फॉर्म संबद्ध (1,1)-फॉर्म के संदर्भ में दिया गया है ω द्वारा

कहाँ ωn का वेज उत्पाद है ω अपने आप से n बार. इसलिए वॉल्यूम फॉर्म एम पर एक वास्तविक (एन, एन)-फॉर्म है। स्थानीय पूर्णसममितिक निर्देशांक में वॉल्यूम फॉर्म इस प्रकार दिया गया है
कोई पूर्णसममितिक सदिश बंडल पर एक हर्मिटियन मापीय पर भी विचार कर सकता है।

काहलर मैनिफोल्ड्स

हर्मिटियन मैनिफोल्ड्स का सबसे महत्वपूर्ण वर्ग काहलर मैनिफोल्ड्स हैं। ये हर्मिटियन मैनिफ़ोल्ड हैं जिनके लिए हर्मिटियन रूप है ω बंद विभेदक रूप है:

इस मामले में फॉर्म ω को काहलर फॉर्म कहा जाता है। काहलर रूप एक सहानुभूतिपूर्ण रूप है, और इसलिए काहलर मैनिफोल्ड्स स्वाभाविक रूप से सहानुभूतिपूर्ण मैनिफोल्ड्स हैं।

एक लगभग हर्मिटियन मैनिफोल्ड जिसका संबद्ध (1,1)-रूप बंद है, स्वाभाविक रूप से लगभग काहलर मैनिफोल्ड कहलाता है। कोई भी सिंपलेक्टिक मैनिफ़ोल्ड एक संगत लगभग जटिल संरचना को स्वीकार करता है जो इसे लगभग काहलर मैनिफोल्ड में बनाता है।

अभिन्नता

काहलर मैनिफोल्ड एक लगभग हर्मिटियन मैनिफोल्ड है जो एक अभिन्नता की स्थिति को संतुष्ट करता है। इसे कई समान तरीकों से कहा जा सकता है।

होने देना (M, g, ω, J) वास्तविक आयाम का लगभग हर्मिटियन मैनिफोल्ड हो 2n और जाने का लेवी-सिविटा कनेक्शन हो g. निम्नलिखित के लिए समतुल्य शर्तें हैं M काहलर बनना:

  • ω बंद है और J अभिन्न है,
  • J = 0,
  • ∇ω = 0,
  • का होलोनोमी समूह एकात्मक समूह में समाहित है U(n) के लिए जुड़े J,

इन स्थितियों की समतुल्यता एकात्मक समूह की एकात्मक समूह#2-आउट-ऑफ़-3 संपत्ति संपत्ति से मेल खाती है।

विशेषकर, यदि M एक हर्मिटियन मैनिफोल्ड है, स्थिति dω = 0 स्पष्ट रूप से बहुत मजबूत स्थितियों के बराबर है ω = ∇J = 0. काहलर सिद्धांत की समृद्धि आंशिक रूप से इन गुणों के कारण है।

संदर्भ

  • Griffiths, Phillip; Joseph Harris (1994) [1978]. Principles of Algebraic Geometry. Wiley Classics Library. New York: Wiley-Interscience. ISBN 0-471-05059-8.
  • Kobayashi, Shoshichi; Katsumi Nomizu (1996) [1963]. Foundations of Differential Geometry, Vol. 2. Wiley Classics Library. New York: Wiley Interscience. ISBN 0-471-15732-5.
  • Kodaira, Kunihiko (1986). Complex Manifolds and Deformation of Complex Structures. Classics in Mathematics. New York: Springer. ISBN 3-540-22614-1.