हर्मिटियन मैनिफोल्ड: Difference between revisions
Line 54: | Line 54: | ||
इस मामले में रूप ω को काहलर रूप कहा जाता है। '''काहलर रूप''' एक [[संसुघटित रूप]] है, और इसलिए काहलर मैनिफोल्ड्स स्वाभाविक रूप से [[संसुघटित मैनिफोल्ड्स]] हैं। | इस मामले में रूप ω को काहलर रूप कहा जाता है। '''काहलर रूप''' एक [[संसुघटित रूप]] है, और इसलिए काहलर मैनिफोल्ड्स स्वाभाविक रूप से [[संसुघटित मैनिफोल्ड्स]] हैं। | ||
एक लगभग हर्मिटियन मैनिफोल्ड जिसका संबद्ध (1,1)-रूप बंद है, स्वाभाविक रूप से लगभग काहलर मैनिफोल्ड कहलाता है। कोई भी [[ सिंपलेक्टिक मैनिफ़ोल्ड ]] एक संगत लगभग जटिल संरचना को स्वीकार करता है जो इसे लगभग काहलर मैनिफोल्ड में बनाता है। | एक लगभग हर्मिटियन मैनिफोल्ड जिसका संबद्ध (1,1)-रूप बंद है, स्वाभाविक रूप से '''लगभग काहलर मैनिफोल्ड''' कहलाता है। कोई भी[[ सिंपलेक्टिक मैनिफ़ोल्ड | संसुघटित मैनिफ़ोल्ड]] एक संगत लगभग जटिल संरचना को स्वीकार करता है जो इसे लगभग काहलर मैनिफोल्ड में बनाता है। | ||
===अभिन्नता=== | ===अभिन्नता=== | ||
काहलर मैनिफोल्ड एक लगभग हर्मिटियन मैनिफोल्ड है जो एक [[अभिन्नता की स्थिति]] को संतुष्ट करता है। इसे कई समान तरीकों से | काहलर मैनिफोल्ड एक लगभग हर्मिटियन मैनिफोल्ड है जो एक [[अभिन्नता की स्थिति]] को संतुष्ट करता है। इसे कई समान तरीकों से व्यक्त किया जा सकता है। | ||
मान लीजिए {{math|(''M'', ''g'', ω, ''J'')}} वास्तविक आयाम {{math|2''n''}} का लगभग हर्मिटियन मैनिफोल्ड है और मान लीजिए कि {{math|∇}} {{math|''g''}} का [[लेवी-सिविटा कनेक्शन|लेवी-सिविटा संबन्ध]] है। {{math|''M''}} के काहलर होने के लिए निम्नलिखित समतुल्य शर्तें हैं, | |||
* {{math|''ω''}} बंद है और {{math|''J''}} | * {{math|''ω''}} बंद है और {{math|''J''}} पूर्णांक है, | ||
* {{math|1=∇''J'' = 0}}, | * {{math|1=∇''J'' = 0}}, | ||
* {{math|1=∇ω = 0}}, | * {{math|1=∇ω = 0}}, | ||
* | * {{math|∇}} का [[होलोनोमी समूह]] {{math|''J''}} से संबद्ध [[एकात्मक समूह]] {{math|U(''n'')}} में समाहित है, | ||
इन स्थितियों की समतुल्यता एकात्मक समूह की | इन स्थितियों की समतुल्यता [[एकात्मक समूह]] की "[[3 में से 2"]] गुणों से मेल खाती है। | ||
विशेष रूप से, यदि {{math|''M''}} एक हर्मिटियन मैनिफोल्ड है, तो स्थिति dω = 0 स्पष्ट रूप से बहुत मजबूत स्थितियों {{math|1=∇''ω'' = ∇''J'' = 0}} के बराबर होगी। काहलर सिद्धांत की समृद्धि आंशिक रूप से इन गुणों के कारण है। | |||
==संदर्भ== | ==संदर्भ== |
Revision as of 08:31, 10 July 2023
गणित में, और अधिक विशेष रूप से अवकल ज्यामिति में, एक हर्मिटियन मैनिफोल्ड रीमैनियन मैनिफोल्ड का जटिल अनुरूप है। अधिक सटीक रूप से, एक हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसमें प्रत्येक (पूर्णसममितिक) स्पर्शी समष्टि पर एक सुचारु रूप से भिन्न हर्मिटियन रूप आंतरिक उत्पाद होता है। हर्मिटियन मैनिफोल्ड की एक परिभाषा यह हो सकती है, यह एक वास्तविक मैनिफोल्ड होता है जिसमें एक रीमैनियन मापीय होता है और यह संरचना एक जटिल संरचना होती है।
एक जटिल संरचना अनिवार्य रूप से एक अभिन्नता स्थिति के साथ लगभग एक जटिल संरचना है, और यह स्थिति मैनिफ़ोल्ड पर एक एकात्मक संरचना (यू (एन) संरचना) उत्पन्न करती है। यदि हम इस स्थिति को छोड़ देते हैं, तो हम लगभग हर्मिटियन मैनिफोल्ड प्राप्त करते है।
किसी भी लगभग हर्मिटियन मैनिफोल्ड पर, हम एक मूल 2-रूप (या सहसंसुघटित संरचना) को प्रस्तावित कर सकते हैं जो केवल चयनित मापीय और लगभग जटिल संरचना पर निर्भर करता है। यह रूप सदैव गैर-परिवर्तनीय होता है। अतिरिक्त अभिन्नता की स्थिति के साथ जब यह बंद होता है (अर्थात, यह एक संसुघटित रूप है), तो हम लगभग काहलर संरचना प्राप्त करते है। यदि लगभग जटिल संरचना और मूल रूप दोनों एकीकृत हैं, तो हमारे पास काहलर संरचना है।
औपचारिक परिभाषा
एक समतल मैनिफोल्ड M के ऊपर एक जटिल सदिश बंडल E पर एक हर्मिटियन मापीय प्रत्येक फाइबर पर एक सुचारु रूप से भिन्न सकारात्मक-निश्चित हर्मिटियन रूप है। इस तरह के मापीय को सदिश बंडल के एक सुचारु वैश्विक खंड h के रूप में देखा जा सकता है जैसे कि M में प्रत्येक बिंदु p के लिए,
सभी ζ के लिए
हर्मिटियन मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसके पूर्णसममितिक स्पर्शरेखा बंडल पर हर्मिटियन मापीय होता है। इसी तरह, एक लगभग हर्मिटियन मैनिफोल्ड अपने पूर्णसममितिक स्पर्शरेखा बंडल पर एक हर्मिटियन मापीय के साथ लगभग एक जटिल मैनिफोल्ड है।
हर्मिटियन मैनिफ़ोल्ड पर मापीय को स्थानीय पूर्णसममितिक निर्देशांक (za) में
रीमैनियन मापीय और संबंधित रूप
एक (लगभग) जटिल मैनिफोल्ड M पर एक हर्मिटियन मापीय h अंतर्निहित समतल मैनिफोल्ड पर एक रीमैनियन मापीय g को परिभाषित करता है। मापीय g को h के वास्तविक भाग के रूप में परिभाषित किया गया है,
सभी तीन रूप h, g, और ω लगभग जटिल संरचना को संरक्षित करते हैं J। अर्थात्, सभी जटिल स्पर्शरेखा सदिशों u और v के लिए
इसलिए (लगभग) जटिल मैनिफोल्ड M पर एक हर्मिटियन संरचना को या तो निर्दिष्ट किया जा सकता है या निम्नानुसार लिखा जा सकता है,
- एक हर्मिटियन मापीय h ऊपरोक्त अनुसार,
- एक रीमैनियन मापीय g जो J को संरक्षित करता है , या
- एक गैर-अपक्षयी 2-रूप ω जो J सुरक्षित रखता है और इस अर्थ में सकारात्मक-निश्चित है कि सभी गैर-शून्य वास्तविक स्पर्शरेखा सदिशों u के लिए ω(u, Ju) > 0 है।
ध्यान दें कि कई लेखक g को ही हर्मिटियन मापीयकहते हैं।
गुण
प्रत्येक (लगभग) जटिल मैनिफोल्ड एक हर्मिटियन मापीय को स्वीकार करता है। यह सीधे रीमैनियन मापीय के अनुरूप कथन से अनुसरण करता है। लगभग जटिल मैनिफ़ोल्ड M पर एक स्वेच्छ रीमैनियन मापीय g को देखते हुए, कोई स्पष्ट तरीके से लगभग जटिल संरचना J के साथ संगत एक नया मापीय g′ बना सकता है,
प्रत्येक लगभग हर्मिटियन मैनिफोल्ड M में एक विहित आयतन रूप होता है जो g द्वारा निर्धारित रीमैनियन आयतन रूप होता है। यह रूप संबद्ध (1,1)-रूप ω बटा
काहलर मैनिफोल्ड्स
हर्मिटियन मैनिफोल्ड्स का सबसे महत्वपूर्ण वर्ग काहलर मैनिफोल्ड्स हैं। ये हर्मिटियन मैनिफ़ोल्ड हैं जिनके लिए हर्मिटियन रूप है ω बंद है,
एक लगभग हर्मिटियन मैनिफोल्ड जिसका संबद्ध (1,1)-रूप बंद है, स्वाभाविक रूप से लगभग काहलर मैनिफोल्ड कहलाता है। कोई भी संसुघटित मैनिफ़ोल्ड एक संगत लगभग जटिल संरचना को स्वीकार करता है जो इसे लगभग काहलर मैनिफोल्ड में बनाता है।
अभिन्नता
काहलर मैनिफोल्ड एक लगभग हर्मिटियन मैनिफोल्ड है जो एक अभिन्नता की स्थिति को संतुष्ट करता है। इसे कई समान तरीकों से व्यक्त किया जा सकता है।
मान लीजिए (M, g, ω, J) वास्तविक आयाम 2n का लगभग हर्मिटियन मैनिफोल्ड है और मान लीजिए कि ∇ g का लेवी-सिविटा संबन्ध है। M के काहलर होने के लिए निम्नलिखित समतुल्य शर्तें हैं,
- ω बंद है और J पूर्णांक है,
- ∇J = 0,
- ∇ω = 0,
- ∇ का होलोनोमी समूह J से संबद्ध एकात्मक समूह U(n) में समाहित है,
इन स्थितियों की समतुल्यता एकात्मक समूह की "3 में से 2" गुणों से मेल खाती है।
विशेष रूप से, यदि M एक हर्मिटियन मैनिफोल्ड है, तो स्थिति dω = 0 स्पष्ट रूप से बहुत मजबूत स्थितियों ∇ω = ∇J = 0 के बराबर होगी। काहलर सिद्धांत की समृद्धि आंशिक रूप से इन गुणों के कारण है।
संदर्भ
- Griffiths, Phillip; Joseph Harris (1994) [1978]. Principles of Algebraic Geometry. Wiley Classics Library. New York: Wiley-Interscience. ISBN 0-471-05059-8.
- Kobayashi, Shoshichi; Katsumi Nomizu (1996) [1963]. Foundations of Differential Geometry, Vol. 2. Wiley Classics Library. New York: Wiley Interscience. ISBN 0-471-15732-5.
- Kodaira, Kunihiko (1986). Complex Manifolds and Deformation of Complex Structures. Classics in Mathematics. New York: Springer. ISBN 3-540-22614-1.