दिशात्मक सांख्यिकी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 51: Line 51:
जहाँ <math>\gamma</math> पैमाना कारक है और <math>\theta_0</math> चरम स्थिति है।
जहाँ <math>\gamma</math> पैमाना कारक है और <math>\theta_0</math> चरम स्थिति है।


=== लपेटा हुआ लेवी वितरण ===
=== रैप्ड लेवी वितरण ===
{{main|Wrapped Lévy distribution}}
{{main|रैप्ड लेवी वितरण}}
रैप्ड लेवी डिस्ट्रीब्यूशन (डब्ल्यूएल) का पीडीएफ है:
 
रैप्ड लेवी वितरण (डब्ल्यूएल) का पीडीएफ है:
<math display="block">f_{WL}(\theta;\mu,c) = \sum_{n=-\infty}^\infty \sqrt{\frac{c}{2\pi}}\,\frac{e^{-c/2(\theta+2\pi n-\mu)}}{(\theta+2\pi n-\mu)^{3/2}}</math>
<math display="block">f_{WL}(\theta;\mu,c) = \sum_{n=-\infty}^\infty \sqrt{\frac{c}{2\pi}}\,\frac{e^{-c/2(\theta+2\pi n-\mu)}}{(\theta+2\pi n-\mu)^{3/2}}</math>
जहां योग का मान शून्य माना जाता है जब <math>\theta+2\pi n-\mu \le 0</math>, <math>c</math> पैमाना कारक है और <math>\mu</math> स्थान पैरामीटर है।
जहां योग का मान शून्य माना जाता है जब <math>\theta+2\pi n-\mu \le 0</math>, <math>c</math> पैमाना कारक है और <math>\mu</math> स्थान पैरामीटर है।


== उच्च-आयामी मैनिफोल्ड्स पर वितरण ==
== उच्च-आयामी मैनिफोल्ड्स पर वितरण ==
[[File:Point sets from Kent distributions mapped onto a sphere - journal.pcbi.0020131.g004.svg|thumb|250px|गोले पर विभिन्न केंट वितरणों से लिए गए तीन बिंदुओं के सेट।]][[द्वि-आयामी क्षेत्र]] (जैसे [[केंट वितरण]]) पर भी वितरण मौजूद हैं<ref>Kent, J (1982) [https://apps.dtic.mil/dtic/tr/fulltext/u2/a097475.pdf The Fisher–Bingham distribution on the sphere]. J Royal Stat Soc, 44, 71–80.</ref>), एन-क्षेत्र | एन-आयामी क्षेत्र (वॉन मिसेस-फिशर वितरण<ref>Fisher, RA (1953) Dispersion on a sphere. Proc. Roy. Soc. London Ser. A., 217, 295–305</ref>) या [[ टोरस्र्स ]] (द्विभाजित वॉन मिज़वितरण<ref>{{cite journal | last1 = Mardia | first1 = KM. Taylor | last2 = CC | last3 = Subramaniam | first3 = GK. | year = 2007 | title = एंगुलर डेटा के लिए प्रोटीन बायोइनफॉरमैटिक्स एंड मिक्चर्स ऑफ बाइवेरेट वॉन माइस डिस्ट्रीब्यूशन| journal = Biometrics | volume = 63 | issue = 2| pages = 505–512 | doi=10.1111/j.1541-0420.2006.00682.x| pmid = 17688502 | s2cid = 14293602 }}</ref>).
[[File:Point sets from Kent distributions mapped onto a sphere - journal.pcbi.0020131.g004.svg|thumb|250px|गोले पर विभिन्न केंट वितरणों से लिए गए तीन बिंदुओं के सेट।]][[द्वि-आयामी क्षेत्र]] (जैसे [[केंट वितरण]]) पर भी वितरण उपस्थित हैं<ref>Kent, J (1982) [https://apps.dtic.mil/dtic/tr/fulltext/u2/a097475.pdf The Fisher–Bingham distribution on the sphere]. J Royal Stat Soc, 44, 71–80.</ref>), ''N''-क्षेत्र | ''N''-आयामी क्षेत्र (वॉन मिज़-फिशर वितरण<ref>Fisher, RA (1953) Dispersion on a sphere. Proc. Roy. Soc. London Ser. A., 217, 295–305</ref>) या [[ टोरस्र्स ]] (द्विभाजित वॉन मिज़वितरण<ref>{{cite journal | last1 = Mardia | first1 = KM. Taylor | last2 = CC | last3 = Subramaniam | first3 = GK. | year = 2007 | title = एंगुलर डेटा के लिए प्रोटीन बायोइनफॉरमैटिक्स एंड मिक्चर्स ऑफ बाइवेरेट वॉन माइस डिस्ट्रीब्यूशन| journal = Biometrics | volume = 63 | issue = 2| pages = 505–512 | doi=10.1111/j.1541-0420.2006.00682.x| pmid = 17688502 | s2cid = 14293602 }}</ref>).


मिसेस-फिशर वितरण का मैट्रिक्स<ref>{{cite journal |last1=Pal |first1=Subhadip |last2=Sengupta |first2=Subhajit |last3=Mitra |first3=Riten |last4=Banerjee |first4=Arunava |title=स्टिफ़ेल मैनिफोल्ड पर मैट्रिक्स लैंगविन वितरण के लिए संयुग्मी पूर्व और पश्च निष्कर्ष|journal=Bayesian Analysis |date=September 2020 |volume=15 |issue=3 |pages=871–908 |doi=10.1214/19-BA1176 |s2cid=209974627 |url=https://projecteuclid.org/journals/bayesian-analysis/volume-15/issue-3/Conjugate-Priors-and-Posterior-Inference-for-the-Matrix-Langevin-Distribution/10.1214/19-BA1176.full |issn=1936-0975|doi-access=free }}</ref> स्टिफ़ेल मैनिफोल्ड पर एक वितरण है, और इसका उपयोग [[रोटेशन मैट्रिक्स]] पर प्रायिकता वितरण के निर्माण के लिए किया जा सकता है।<ref>{{cite journal | last1 = Downs | year = 1972 | title = ओरिएंटेशनल आँकड़े| journal = Biometrika | volume = 59 | issue = 3| pages = 665–676 | doi=10.1093/biomet/59.3.665}}</ref>
मिज़-फिशर वितरण का आव्यूह<ref>{{cite journal |last1=Pal |first1=Subhadip |last2=Sengupta |first2=Subhajit |last3=Mitra |first3=Riten |last4=Banerjee |first4=Arunava |title=स्टिफ़ेल मैनिफोल्ड पर मैट्रिक्स लैंगविन वितरण के लिए संयुग्मी पूर्व और पश्च निष्कर्ष|journal=Bayesian Analysis |date=September 2020 |volume=15 |issue=3 |pages=871–908 |doi=10.1214/19-BA1176 |s2cid=209974627 |url=https://projecteuclid.org/journals/bayesian-analysis/volume-15/issue-3/Conjugate-Priors-and-Posterior-Inference-for-the-Matrix-Langevin-Distribution/10.1214/19-BA1176.full |issn=1936-0975|doi-access=free }}</ref> स्टिफ़ेल मैनिफोल्ड पर एक वितरण है, और इसका उपयोग [[रोटेशन मैट्रिक्स|रोटेशन आव्यूह]] पर प्रायिकता वितरण के निर्माण के लिए किया जा सकता है।<ref>{{cite journal | last1 = Downs | year = 1972 | title = ओरिएंटेशनल आँकड़े| journal = Biometrika | volume = 59 | issue = 3| pages = 665–676 | doi=10.1093/biomet/59.3.665}}</ref> बिंगहैम वितरण N आयामों में अक्षों पर वितरण है, या समतुल्य रूप से, (N − 1)-आयामी क्षेत्र पर बिंदुओं पर पहचान किए गए एंटीपोड के साथ है।<ref>{{cite journal | last1 = Bingham | first1 = C. | author-link = Christopher Bingham | year = 1974 | title = स्फेयर पर एक एंटीपोडली सममित वितरण| journal = Ann. Stat. | volume = 2 | issue = 6| pages = 1201–1225 | doi=10.1214/aos/1176342874| doi-access = free }}</ref> उदाहरण के लिए, यदि N = 2, अक्ष तल में उत्पत्ति के माध्यम से अप्रत्यक्ष रेखाएँ हैं। इस परिस्थिति में, प्रत्येक अक्ष विमान में यूनिट वृत्त (जो एक आयामी क्षेत्र है) को दो बिंदुओं पर काटता है जो एक दूसरे के एंटीपोड हैं। N = 4 के लिए, बिंगहैम वितरण इकाई चतुष्कोणों ([[ मैं मुड़ा ]]्स) के स्थान पर वितरण है। चूंकि छंद एक रोटेशन आव्यूह से मेल खाता है, एन = 4 के लिए बिंघम वितरण का उपयोग आव्यूह-वॉन मिज़-फिशर वितरण की तरह, रोटेशन के स्थान पर संभाव्यता वितरण के निर्माण के लिए किया जा सकता है।
बिंगहैम वितरण N आयामों में अक्षों पर वितरण है, या समतुल्य रूप से, (N − 1)-आयामी क्षेत्र पर बिंदुओं पर पहचान किए गए एंटीपोड के साथ है।<ref>{{cite journal | last1 = Bingham | first1 = C. | author-link = Christopher Bingham | year = 1974 | title = स्फेयर पर एक एंटीपोडली सममित वितरण| journal = Ann. Stat. | volume = 2 | issue = 6| pages = 1201–1225 | doi=10.1214/aos/1176342874| doi-access = free }}</ref> उदाहरण के लिए, यदि N = 2, अक्ष तल में उत्पत्ति के माध्यम से अप्रत्यक्ष रेखाएँ हैं। इस मामले में, प्रत्येक अक्ष विमान में यूनिट वृत्त (जो एक आयामी क्षेत्र है) को दो बिंदुओं पर काटता है जो एक दूसरे के एंटीपोड हैं। N = 4 के लिए, बिंगहैम वितरण इकाई चतुष्कोणों ([[ मैं मुड़ा ]]्स) के स्थान पर वितरण है। चूंकि छंद एक रोटेशन मैट्रिक्स से मेल खाता है, एन = 4 के लिए बिंघम वितरण का उपयोग मैट्रिक्स-वॉन मिसेस-फिशर वितरण की तरह, रोटेशन के स्थान पर संभाव्यता वितरण के निर्माण के लिए किया जा सकता है।


ये वितरण उदाहरण के लिए भूविज्ञान में उपयोग किए जाते हैं,<ref>{{cite journal | last1 = Peel | first1 = D. | last2 = Whiten | first2 = WJ. | last3 = McLachlan | first3 = GJ. | year = 2001 | title = संयुक्त सेट पहचान में सहायता के लिए केंट वितरण के फिटिंग मिश्रण| url =http://www.maths.uq.edu.au/~gjm/pwm_jasa01.pdf | journal = J. Am. Stat. Assoc. | volume = 96 | issue = 453| pages = 56–63 | doi=10.1198/016214501750332974| s2cid = 11667311 }}</ref> [[क्रिस्टलोग्राफी]]<ref>{{cite journal | last1 = Krieger Lassen | first1 = N. C. | last2 = Juul Jensen | first2 = D. | last3 = Conradsen | first3 = K. | year = 1994 | title = अभिविन्यास डेटा के सांख्यिकीय विश्लेषण पर| journal = Acta Crystallogr | volume = A50 | issue = 6| pages = 741–748 | doi = 10.1107/S010876739400437X }}</ref> और जैव सूचना विज्ञान।<ref name="compbiol.plosjournals.org"/>
ये वितरण उदाहरण के लिए भूविज्ञान में उपयोग किए जाते हैं,<ref>{{cite journal | last1 = Peel | first1 = D. | last2 = Whiten | first2 = WJ. | last3 = McLachlan | first3 = GJ. | year = 2001 | title = संयुक्त सेट पहचान में सहायता के लिए केंट वितरण के फिटिंग मिश्रण| url =http://www.maths.uq.edu.au/~gjm/pwm_jasa01.pdf | journal = J. Am. Stat. Assoc. | volume = 96 | issue = 453| pages = 56–63 | doi=10.1198/016214501750332974| s2cid = 11667311 }}</ref> [[क्रिस्टलोग्राफी]]<ref>{{cite journal | last1 = Krieger Lassen | first1 = N. C. | last2 = Juul Jensen | first2 = D. | last3 = Conradsen | first3 = K. | year = 1994 | title = अभिविन्यास डेटा के सांख्यिकीय विश्लेषण पर| journal = Acta Crystallogr | volume = A50 | issue = 6| pages = 741–748 | doi = 10.1107/S010876739400437X }}</ref> और जैव सूचना विज्ञान।<ref name="compbiol.plosjournals.org"/>
<ref>Kent, J.T., Hamelryck, T. (2005). [http://www.amsta.leeds.ac.uk/statistics/workshop/lasr2005/Proceedings/kent.pdf Using the Fisher–Bingham distribution in stochastic models for protein structure]. In S. Barber, P.D. Baxter, K.V.Mardia, & R.E. Walls (Eds.), Quantitative Biology, Shape Analysis, and Wavelets, pp. 57–60. Leeds, Leeds University Press</ref>
<ref>Kent, J.T., Hamelryck, T. (2005). [http://www.amsta.leeds.ac.uk/statistics/workshop/lasr2005/Proceedings/kent.pdf Using the Fisher–Bingham distribution in stochastic models for protein structure]. In S. Barber, P.D. Baxter, K.V.Mardia, & R.E. Walls (Eds.), Quantitative Biology, Shape Analysis, and Wavelets, pp. 57–60. Leeds, Leeds University Press</ref>
<ref>{{cite journal|title= स्थानीय प्रोटीन संरचना का एक उदार, संभाव्य मॉडल| doi=10.1073/pnas.0801715105| pmid=18579771|volume=105| issue=26|journal=Proceedings of the National Academy of Sciences|pages=8932–8937|pmc=2440424| year=2008| last1=Boomsma| first1=Wouter| last2=Mardia| first2=Kanti V.| last3=Taylor| first3=Charles C.| last4=Ferkinghoff-Borg| first4=Jesper| last5=Krogh| first5=Anders| last6=Hamelryck| first6=Thomas| bibcode=2008PNAS..105.8932B| doi-access=free}}</ref>
<ref>{{cite journal|title= स्थानीय प्रोटीन संरचना का एक उदार, संभाव्य मॉडल| doi=10.1073/pnas.0801715105| pmid=18579771|volume=105| issue=26|journal=Proceedings of the National Academy of Sciences|pages=8932–8937|pmc=2440424| year=2008| last1=Boomsma| first1=Wouter| last2=Mardia| first2=Kanti V.| last3=Taylor| first3=Charles C.| last4=Ferkinghoff-Borg| first4=Jesper| last5=Krogh| first5=Anders| last6=Hamelryck| first6=Thomas| bibcode=2008PNAS..105.8932B| doi-access=free}}</ref>
== क्षण ==
== क्षण ==
एक वत्तीय वितरण के कच्चे वेक्टर (या त्रिकोणमितीय) क्षणों को इस रूप में परिभाषित किया गया है
एक वत्तीय वितरण के कच्चे सदिश (या त्रिकोणमितीय) क्षणों को इस रूप में परिभाषित किया गया है


:<math>
:<math>
m_n=\operatorname E(z^n)=\int_\Gamma P(\theta) z^n \, d\theta
m_n=\operatorname E(z^n)=\int_\Gamma P(\theta) z^n \, d\theta
</math>
</math>
कहाँ <math>\Gamma</math> लंबाई का कोई अंतराल है <math>2\pi</math>, <math>P(\theta)</math> वृत्ताकार बंटन का प्रायिकता घनत्व फलन है, और <math>z=e^{i \theta}</math>. अभिन्न के बाद से <math>P(\theta)</math> एकता है, और एकीकरण अंतराल परिमित है, यह इस प्रकार है कि किसी भी वत्तीय वितरण के क्षण हमेशा परिमित और अच्छी तरह से परिभाषित होते हैं।
जहाँ <math>\Gamma</math> लंबाई का कोई अंतराल है <math>2\pi</math>, <math>P(\theta)</math> वृत्ताकार बंटन का प्रायिकता घनत्व फलन है, और <math>z=e^{i \theta}</math>. अभिन्न के बाद से <math>P(\theta)</math> एकता है, और एकीकरण अंतराल परिमित है, यह इस प्रकार है कि किसी भी वत्तीय वितरण के क्षण हमेशा परिमित और अच्छी तरह से परिभाषित होते हैं।


नमूना क्षणों को समान रूप से परिभाषित किया गया है:
नमूना क्षणों को समान रूप से परिभाषित किया गया है:
Line 81: Line 79:
\overline{m}_n=\frac{1}{N}\sum_{i=1}^N z_i^n.
\overline{m}_n=\frac{1}{N}\sum_{i=1}^N z_i^n.
</math>
</math>
जनसंख्या परिणामी वेक्टर, लंबाई और माध्य कोण को संबंधित नमूना मापदंडों के अनुरूप परिभाषित किया गया है।
जनसंख्या परिणामी सदिश, लंबाई और माध्य कोण को संबंधित नमूना मापदंडों के अनुरूप परिभाषित किया गया है।


:<math>
:<math>
Line 139: Line 137:
\overline{z} = \overline{C}+i\overline{S}
\overline{z} = \overline{C}+i\overline{S}
</math>
</math>
कहाँ
जहाँ


:<math>
:<math>
Line 149: Line 147:
\overline{z} = \overline{R}e^{i\overline{\theta}}
\overline{z} = \overline{R}e^{i\overline{\theta}}
</math>
</math>
कहाँ
जहाँ


:<math>
:<math>
Line 161: Line 159:
\int_\Gamma \cdots \int_\Gamma \prod_{n=1}^N \left[ P(\theta_n) \, d\theta_n \right]
\int_\Gamma \cdots \int_\Gamma \prod_{n=1}^N \left[ P(\theta_n) \, d\theta_n \right]
</math>
</math>
कहाँ <math>\Gamma</math> लंबाई के किसी भी अंतराल से अधिक है <math>2\pi</math> और अभिन्न बाधा के अधीन है <math>\overline{S}</math> और <math>\overline{C}</math> स्थिर हैं, या, वैकल्पिक रूप से, वह <math>\overline{R}</math> और <math>\overline{\theta}</math> स्थिर हैं।
जहाँ <math>\Gamma</math> लंबाई के किसी भी अंतराल से अधिक है <math>2\pi</math> और अभिन्न बाधा के अधीन है <math>\overline{S}</math> और <math>\overline{C}</math> स्थिर हैं, या, वैकल्पिक रूप से, वह <math>\overline{R}</math> और <math>\overline{\theta}</math> स्थिर हैं।


अधिकांश वत्तीय वितरणों के लिए माध्य के वितरण की गणना विश्लेषणात्मक रूप से संभव नहीं है, और विचरण का विश्लेषण करने के लिए, संख्यात्मक या गणितीय अनुमानों की आवश्यकता होती है।<ref name="SRJ"/>
अधिकांश वत्तीय वितरणों के लिए माध्य के वितरण की गणना विश्लेषणात्मक रूप से संभव नहीं है, और विचरण का विश्लेषण करने के लिए, संख्यात्मक या गणितीय अनुमानों की आवश्यकता होती है।<ref name="SRJ"/>

Revision as of 22:42, 4 July 2023

दिशात्मक आँकड़े (वत्तीय सांख्यिकी या गोलाकार सांख्यिकी भी) सांख्यिकीकी उपशाखा है जो दिशा (ज्यामिति) (यूक्लिडियन स्पेस, Rn में इकाई सदिश) से संबंधित है।), कार्तीय समन्वय प्रणाली (रेखा (ज्यामिति) Rn में मूल के माध्यम से) या Rn में घूर्णनl अधिकांशतः सामान्य तौर पर, दिशात्मक सांख्यिकी कॉम्पैक्ट रीमैनियन मैनिफोल्ड्स पर टिप्पणियों से संबंधित होते हैं, जिसमें स्टिफ़ेल मैनिफोल्ड्स भी सम्मिलित है।

एक प्रोटीन के समग्र आकार को इकाई क्षेत्र पर बिंदुओं के अनुक्रम के रूप में परिचालित किया जा सकता है। प्रोटीन संरचनाओं के एक बड़े संग्रह के लिए ऐसे बिंदुओं के गोलाकार हिस्टोग्राम के दो दृश्य दिखाए गए हैं। ऐसे डेटा का सांख्यिकीय उपचार दिशात्मक आंकड़ों के दायरे में है।[1]

तथ्य यह है कि 0 डिग्री (कोण)कोण) और 360 डिग्री समान कोण हैं, इसलिए उदाहरण के लिए 180 डिग्री 2 डिग्री और 358 डिग्री का उचित मध्य नहीं है, एक उदाहरण प्रदान करता है कि कुछ प्रकार के डेटा के विश्लेषण के लिए विशेष सांख्यिकीय विधियों की आवश्यकता होती है (इस मामले में, कोणीय डेटा)। डेटा के अन्य उदाहरण जिन्हें दिशात्मक माना जा सकता है, उनमें अस्थायी अवधियों (जैसे दिन, सप्ताह, महीने, वर्ष, आदि का समय), कम्पास दिशाएं, अणुओं में डायहेड्रल कोण, अभिविन्यास, घूर्णन आदि सम्मिलित हैं।

वत्तीय वितरण

कोई प्रायिकता घनत्व फलन (पीडीएफ) लाइन पर ''लपेटा'' (रअप्पड़) जा सकता है वितरण इकाई त्रिज्या के एक वृत्त की परिधि के चारों ओर लपेटा गया।[2] यानी लपेटे हुए चर का पीडीएफ

है
इस अवधारणा को बहुभिन्नरूपी संदर्भ में साधारण योग के विस्तार से विस्तारित किया जा सकता है राशियाँ जो फीचर स्पेस में सभी आयामों को कवर करती हैं:
जहाँ है -वें यूक्लिडियन आधार सदिश हैं।

निम्नलिखित खंड कुछ प्रासंगिक वत्तीय वितरण दिखाते हैं।

वॉन मिज़ वत्तीय वितरण

वॉन मिज़ वितरण एक वत्तीय वितरण है, जो किसी भी अन्य वत्तीय वितरण की तरह, वृत्त के चारों ओर एक निश्चित रैखिक संभाव्यता वितरण के आवरण के रूप में सोचा जा सकता है। वॉन मिज़ वितरण के लिए अंतर्निहित रैखिक संभाव्यता वितरण गणितीय रूप से अट्रैक्टिव है; हालाँकि, सांख्यिकीय उद्देश्यों के लिए, अंतर्निहित रैखिक वितरण से निपटने की कोई आवश्यकता नहीं है। वॉन मिज़ वितरण की उपयोगिता दो गुना है: यह सभी वत्तीय वितरणों का सबसे गणितीय रूप से ट्रैक्टेबल है, जो सरल सांख्यिकीय विश्लेषण की अनुमति देता है, और यह लिपटे सामान्य वितरण के करीब है, जो रैखिक सामान्य वितरण के अनुरूप है, महत्वपूर्ण है क्योंकि यह बड़ी संख्या में छोटे कोणीय विचलनों के योग के लिए एक सीमित परिस्थिति है। वास्तव में, वॉन मिज़ वितरण को प्रायः इसके उपयोग में आसानी और लिपटे सामान्य वितरण (फिशर, 1993) के साथ घनिष्ठ संबंध के कारण वत्तीय सामान्य वितरण के रूप में जाना जाता है।

वॉन मिज़ वितरण का पीडीएफ है:

जहाँ क्रम 0 का संशोधित बेसेल फलन है।

वृत्तीय समान वितरण

संभाव्यता घनत्व फलन (पीडीएफ) वत्तीय समान वितरण द्वारा दिया गया है

ऐसा भी सोचा जा सकता है वॉन मिज़ ऊपर का।

रैप्ड सामान्य वितरण

रैप्ड नॉर्मल डिस्ट्रीब्यूशन (WN) का पीडीएफ है:

जहां μ और σ क्रमशः अलिखित वितरण का माध्य और मानक विचलन हैं, और जैकोबी थीटा फलन है:
जहाँ और

रैप्ड कॉची वितरण

रैप्ड कॉची वितरण (peak position का पीडीएफ है:

जहाँ पैमाना कारक है और चरम स्थिति है।

रैप्ड लेवी वितरण

रैप्ड लेवी वितरण (डब्ल्यूएल) का पीडीएफ है:

जहां योग का मान शून्य माना जाता है जब , पैमाना कारक है और स्थान पैरामीटर है।

उच्च-आयामी मैनिफोल्ड्स पर वितरण

गोले पर विभिन्न केंट वितरणों से लिए गए तीन बिंदुओं के सेट।

द्वि-आयामी क्षेत्र (जैसे केंट वितरण) पर भी वितरण उपस्थित हैं[3]), N-क्षेत्र | N-आयामी क्षेत्र (वॉन मिज़-फिशर वितरण[4]) या टोरस्र्स (द्विभाजित वॉन मिज़वितरण[5]).

मिज़-फिशर वितरण का आव्यूह[6] स्टिफ़ेल मैनिफोल्ड पर एक वितरण है, और इसका उपयोग रोटेशन आव्यूह पर प्रायिकता वितरण के निर्माण के लिए किया जा सकता है।[7] बिंगहैम वितरण N आयामों में अक्षों पर वितरण है, या समतुल्य रूप से, (N − 1)-आयामी क्षेत्र पर बिंदुओं पर पहचान किए गए एंटीपोड के साथ है।[8] उदाहरण के लिए, यदि N = 2, अक्ष तल में उत्पत्ति के माध्यम से अप्रत्यक्ष रेखाएँ हैं। इस परिस्थिति में, प्रत्येक अक्ष विमान में यूनिट वृत्त (जो एक आयामी क्षेत्र है) को दो बिंदुओं पर काटता है जो एक दूसरे के एंटीपोड हैं। N = 4 के लिए, बिंगहैम वितरण इकाई चतुष्कोणों (मैं मुड़ा ्स) के स्थान पर वितरण है। चूंकि छंद एक रोटेशन आव्यूह से मेल खाता है, एन = 4 के लिए बिंघम वितरण का उपयोग आव्यूह-वॉन मिज़-फिशर वितरण की तरह, रोटेशन के स्थान पर संभाव्यता वितरण के निर्माण के लिए किया जा सकता है।

ये वितरण उदाहरण के लिए भूविज्ञान में उपयोग किए जाते हैं,[9] क्रिस्टलोग्राफी[10] और जैव सूचना विज्ञान।[1] [11] [12]

क्षण

एक वत्तीय वितरण के कच्चे सदिश (या त्रिकोणमितीय) क्षणों को इस रूप में परिभाषित किया गया है

जहाँ लंबाई का कोई अंतराल है , वृत्ताकार बंटन का प्रायिकता घनत्व फलन है, और . अभिन्न के बाद से एकता है, और एकीकरण अंतराल परिमित है, यह इस प्रकार है कि किसी भी वत्तीय वितरण के क्षण हमेशा परिमित और अच्छी तरह से परिभाषित होते हैं।

नमूना क्षणों को समान रूप से परिभाषित किया गया है:

जनसंख्या परिणामी सदिश, लंबाई और माध्य कोण को संबंधित नमूना मापदंडों के अनुरूप परिभाषित किया गया है।

इसके अलावा, उच्च क्षणों की लंबाई को इस प्रकार परिभाषित किया गया है:

जबकि उच्च क्षणों के कोणीय भाग न्यायसंगत हैं . सभी क्षणों की लंबाई 0 और 1 के बीच होगी।

स्थान और प्रसार के उपाय

जनसंख्या और उस जनसंख्या से लिए गए नमूने दोनों के लिए केंद्रीय प्रवृत्ति और सांख्यिकीय फैलाव के विभिन्न उपायों को परिभाषित किया जा सकता है।[13]

केंद्रीय प्रवृत्ति

स्थान का सबसे सामान्य माप वृत्ताकार माध्य है। जनसंख्या वृत्ताकार माध्य केवल वितरण का पहला क्षण है जबकि नमूना माध्य नमूने का पहला क्षण है। नमूना माध्य जनसंख्या माध्य के निष्पक्ष अनुमानक के रूप में काम करेगा।

जब डेटा केंद्रित होता है, तो माध्यिका और मोड को रैखिक मामले के सादृश्य द्वारा परिभाषित किया जा सकता है, लेकिन अधिक फैलाव या बहु-मोडल डेटा के लिए, ये अवधारणाएँ उपयोगी नहीं होती हैं।

फैलाव

सर्कुलर फैलाव के सबसे आम उपाय हैं:

  • circular variance. नमूने के लिए वत्तीय विचरण को इस प्रकार परिभाषित किया गया है:
    और आबादी के लिए
    दोनों के मान 0 और 1 के बीच होंगे।
  • circular standard deviation
    0 और अनंत के बीच मानों के साथ। मानक विचलन की यह परिभाषा (विचरण के वर्गमूल के बजाय) उपयोगी है क्योंकि लपेटे हुए सामान्य वितरण के लिए, यह अंतर्निहित सामान्य वितरण के मानक विचलन का अनुमानक है। इसलिए यह मानक विचलन के छोटे मूल्यों के लिए वत्तीय वितरण को रैखिक मामले में मानकीकृत करने की अनुमति देगा। यह वॉन मिज़ वितरण पर भी लागू होता है जो लपेटे गए सामान्य वितरण के निकट अनुमानित है। ध्यान दें कि छोटे के लिए , अपने पास .
  • circular dispersion
    0 और अनंत के बीच मानों के साथ। प्रसार का यह माप प्रसरण के सांख्यिकीय विश्लेषण में उपयोगी पाया गया है।

माध्य का वितरण

एन माप के एक सेट को देखते हुए z का माध्य मान इस प्रकार परिभाषित किया गया है:

जिसे व्यक्त किया जा सकता है

जहाँ

या, वैकल्पिक रूप से:

जहाँ

माध्य कोण का वितरण () एक वत्तीय पीडीएफ के लिए पी (θ) द्वारा दिया जाएगा:

जहाँ लंबाई के किसी भी अंतराल से अधिक है और अभिन्न बाधा के अधीन है और स्थिर हैं, या, वैकल्पिक रूप से, वह और स्थिर हैं।

अधिकांश वत्तीय वितरणों के लिए माध्य के वितरण की गणना विश्लेषणात्मक रूप से संभव नहीं है, और विचरण का विश्लेषण करने के लिए, संख्यात्मक या गणितीय अनुमानों की आवश्यकता होती है।[14]

नमूना साधनों के वितरण के लिए केंद्रीय सीमा प्रमेय लागू किया जा सकता है। (मुख्य लेख: दिशात्मक सांख्यिकी के लिए केंद्रीय सीमा प्रमेय)। इसे दिखाया जा सकता है[14] कि वितरण बड़े नमूना आकार की सीमा में एक द्विभाजित सामान्य वितरण तक पहुँचता है।

फिट और महत्व परीक्षण की अच्छाई

चक्रीय डेटा के लिए - (उदाहरण के लिए, क्या यह समान रूप से वितरित है):

  • एक अनिमॉडल क्लस्टर के लिए रेले परीक्षण
  • संभवतः मल्टीमॉडल डेटा के लिए कुइपर का परीक्षण।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Hamelryck, Thomas; Kent, John T.; Krogh, Anders (2006). "Hamelryck, T., Kent, J., Krogh, A. (2006) Sampling realistic protein conformations using local structural bias. PLoS Comput. Biol., 2(9): e131". PLOS Computational Biology. 2 (9): e131. Bibcode:2006PLSCB...2..131H. doi:10.1371/journal.pcbi.0020131. PMC 1570370. PMID 17002495.
  2. Bahlmann, C., (2006), Directional features in online handwriting recognition, Pattern Recognition, 39
  3. Kent, J (1982) The Fisher–Bingham distribution on the sphere. J Royal Stat Soc, 44, 71–80.
  4. Fisher, RA (1953) Dispersion on a sphere. Proc. Roy. Soc. London Ser. A., 217, 295–305
  5. Mardia, KM. Taylor; CC; Subramaniam, GK. (2007). "एंगुलर डेटा के लिए प्रोटीन बायोइनफॉरमैटिक्स एंड मिक्चर्स ऑफ बाइवेरेट वॉन माइस डिस्ट्रीब्यूशन". Biometrics. 63 (2): 505–512. doi:10.1111/j.1541-0420.2006.00682.x. PMID 17688502. S2CID 14293602.
  6. Pal, Subhadip; Sengupta, Subhajit; Mitra, Riten; Banerjee, Arunava (September 2020). "स्टिफ़ेल मैनिफोल्ड पर मैट्रिक्स लैंगविन वितरण के लिए संयुग्मी पूर्व और पश्च निष्कर्ष". Bayesian Analysis. 15 (3): 871–908. doi:10.1214/19-BA1176. ISSN 1936-0975. S2CID 209974627.
  7. Downs (1972). "ओरिएंटेशनल आँकड़े". Biometrika. 59 (3): 665–676. doi:10.1093/biomet/59.3.665.
  8. Bingham, C. (1974). "स्फेयर पर एक एंटीपोडली सममित वितरण". Ann. Stat. 2 (6): 1201–1225. doi:10.1214/aos/1176342874.
  9. Peel, D.; Whiten, WJ.; McLachlan, GJ. (2001). "संयुक्त सेट पहचान में सहायता के लिए केंट वितरण के फिटिंग मिश्रण" (PDF). J. Am. Stat. Assoc. 96 (453): 56–63. doi:10.1198/016214501750332974. S2CID 11667311.
  10. Krieger Lassen, N. C.; Juul Jensen, D.; Conradsen, K. (1994). "अभिविन्यास डेटा के सांख्यिकीय विश्लेषण पर". Acta Crystallogr. A50 (6): 741–748. doi:10.1107/S010876739400437X.
  11. Kent, J.T., Hamelryck, T. (2005). Using the Fisher–Bingham distribution in stochastic models for protein structure. In S. Barber, P.D. Baxter, K.V.Mardia, & R.E. Walls (Eds.), Quantitative Biology, Shape Analysis, and Wavelets, pp. 57–60. Leeds, Leeds University Press
  12. Boomsma, Wouter; Mardia, Kanti V.; Taylor, Charles C.; Ferkinghoff-Borg, Jesper; Krogh, Anders; Hamelryck, Thomas (2008). "स्थानीय प्रोटीन संरचना का एक उदार, संभाव्य मॉडल". Proceedings of the National Academy of Sciences. 105 (26): 8932–8937. Bibcode:2008PNAS..105.8932B. doi:10.1073/pnas.0801715105. PMC 2440424. PMID 18579771.
  13. Fisher, NI., Statistical Analysis of Circular Data, Cambridge University Press, 1993. ISBN 0-521-35018-2
  14. 14.0 14.1 Jammalamadaka, S. Rao; Sengupta, A. (2001). परिपत्र सांख्यिकी में विषय. New Jersey: World Scientific. ISBN 978-981-02-3778-3. Retrieved 2011-05-15.


दिशात्मक सांख्यिकी पर पुस्तकें

  • बत्शेलेट, ई. सर्कुलर स्टैटिस्टिक्स इन बायोलॉजी, अकादमिक प्रेस, लंदन, 1981। ISBN 0-12-081050-6.
  • निकोलस फिशर (सांख्यिकीविद) | फिशर, एन.आई., सर्कुलर डेटा का सांख्यिकीय विश्लेषण, कैम्ब्रिज यूनिवर्सिटी प्रेस, 1993। ISBN 0-521-35018-2
  • निकोलस फिशर (सांख्यिकीविद्) | फिशर, एन.आई., लुईस, टी., एम्बलटन, बीजेजे। गोलाकार डेटा का सांख्यिकीय विश्लेषण, कैम्ब्रिज यूनिवर्सिटी प्रेस, 1993। ISBN 0-521-45699-1
  • जमालमदका एस. राव और सेनगुप्ता ए. वत्तीय सांख्यिकी में विषय, विश्व वैज्ञानिक, 2001। ISBN 981-02-3778-2
  • कांतिलाल मर्दिया|मर्दिया, के.वी. और जुप्प पी., डायरेक्शनल स्टैटिस्टिक्स (दूसरा संस्करण), जॉन विले एंड संस लिमिटेड, 2000। ISBN 0-471-95333-4
  • ले, सी. और वर्देबाउट, टी., मॉडर्न डायरेक्शनल स्टैटिस्टिक्स, सीआरसी प्रेस टेलर एंड फ्रांसिस ग्रुप, 2017। ISBN 978-1-4987-0664-3

श्रेणी:दिशात्मक आँकड़े श्रेणी:सांख्यिकीय डेटा प्रकार श्रेणी:सांख्यिकीय सिद्धांत श्रेणी:संभाव्यता वितरण के प्रकार