प्रतिबिम्ब सूत्र: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Numerical computation of special functions}} | {{short description|Numerical computation of special functions}} | ||
{{about| | {{about|संख्या सिद्धांत और कलन में प्रतिबिंब|ज्यामिति में प्रतिबिंब सूत्र|चिंतन (गणित)}} | ||
परावर्तन सूत्र विशेष | |||
गणित में, किसी [[फ़ंक्शन (गणित)|फलन (गणित)]] ''f'' के लिए '''प्रतिबिंब सूत्र''' या प्रतिबिंब संबंध ''f''(''a'' − ''x'') और ''f''(''x'') के मध्य एक संबंध है। यह एक [[कार्यात्मक समीकरण|''कार्यात्मक'']] ''[[कार्यात्मक समीकरण|समीकरण]]'' का एक विशेष स्तिथि है, और साहित्य में "प्रतिबिंब सूत्र" का अर्थ होने पर "[[कार्यात्मक समीकरण|''कार्यात्मक'']] समीकरण" शब्द का उपयोग करना अधिक समान माना जाता है। | |||
इस प्रकार से परावर्तन सूत्र विशेष फलन के [[संख्यात्मक विश्लेषण]] के लिए उपयोगी होते हैं। वास्तव में, अनुमान जिसमें अधिक स्पष्ट होते है या केवल प्रतिबिंब बिंदु के तरफ (सामान्यतः [[जटिल विमान]] के सकारात्मक आधे भाग में) अभिसरण होता है, सभी विधियों के लिए नियोजित किया जा सकता है। | |||
== ज्ञात सूत्र == | == ज्ञात सूत्र == | ||
Line 9: | Line 11: | ||
:<math>f(-x) = f(x),</math> | :<math>f(-x) = f(x),</math> | ||
और सभी विषम | और सभी विषम फलन के लिए, | ||
:<math>f(-x) = -f(x).</math> | :<math>f(-x) = -f(x).</math> | ||
प्रसिद्ध संबंध यूलर का प्रतिबिंब सूत्र है | प्रसिद्ध संबंध यूलर का प्रतिबिंब सूत्र इस प्रकार से है | ||
:<math>\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin{(\pi z)}}, \qquad z \not\in \mathbb Z</math> | :<math>\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin{(\pi z)}}, \qquad z \not\in \mathbb Z</math> | ||
[[गामा फ़ंक्शन]] | [[लियोनहार्ड यूलर]] के कारण [[गामा फ़ंक्शन|गामा फलन]] <math>\Gamma(z)</math>, के लिए। | ||
सामान्य ''n''-th क्रम बहुविवाह फलन ''ψ''<sup>(''n'')</sup>(''z''), के लिए एक प्रतिबिंब सूत्र भी है | |||
:<math>\psi^{(n)} (1-z)+(-1)^{n+1}\psi^{(n)} (z) = (-1)^n \pi \frac{d^n}{d z^n} \cot{(\pi z)} </math> | :<math>\psi^{(n)} (1-z)+(-1)^{n+1}\psi^{(n)} (z) = (-1)^n \pi \frac{d^n}{d z^n} \cot{(\pi z)} </math> | ||
जोकी इस तथ्य के आसमान रूप से उत्पन्न होता है कि बहुविवाह फलन को <math>\ln \Gamma</math> व्युत्पन्न के रूप में परिभाषित किया गया है और इस प्रकार प्रतिबिंब सूत्र प्राप्त होता है। | |||
[[रीमैन ज़ेटा फ़ंक्शन]] ζ(z) संतुष्ट करता है | [[रीमैन ज़ेटा फ़ंक्शन|रीमैन ज़ेटा फलन]] ζ(z) संतुष्ट करता है | ||
:<math>\frac{\zeta(1-z)}{\zeta(z)} = \frac{2\, \Gamma(z)}{(2\pi)^{z}} \cos\left(\frac{\pi z}{2}\right),</math> | :<math>\frac{\zeta(1-z)}{\zeta(z)} = \frac{2\, \Gamma(z)}{(2\pi)^{z}} \cos\left(\frac{\pi z}{2}\right),</math> | ||
Line 28: | Line 29: | ||
:<math>\xi(z) = \xi(1-z). </math> | :<math>\xi(z) = \xi(1-z). </math> | ||
==संदर्भ== | ==संदर्भ== | ||
* {{MathWorld|urlname=ReflectionRelation|title=Reflection Relation}} | * {{MathWorld|urlname=ReflectionRelation|title=Reflection Relation}} |
Revision as of 13:15, 8 July 2023
गणित में, किसी फलन (गणित) f के लिए प्रतिबिंब सूत्र या प्रतिबिंब संबंध f(a − x) और f(x) के मध्य एक संबंध है। यह एक कार्यात्मक समीकरण का एक विशेष स्तिथि है, और साहित्य में "प्रतिबिंब सूत्र" का अर्थ होने पर "कार्यात्मक समीकरण" शब्द का उपयोग करना अधिक समान माना जाता है।
इस प्रकार से परावर्तन सूत्र विशेष फलन के संख्यात्मक विश्लेषण के लिए उपयोगी होते हैं। वास्तव में, अनुमान जिसमें अधिक स्पष्ट होते है या केवल प्रतिबिंब बिंदु के तरफ (सामान्यतः जटिल विमान के सकारात्मक आधे भाग में) अभिसरण होता है, सभी विधियों के लिए नियोजित किया जा सकता है।
ज्ञात सूत्र
सम और विषम फलन a = 0 के आस-पास परिभाषा के सरल प्रतिबिंब संबंधों को संतुष्ट करते हैं। सभी सम फलनों के लिए,
और सभी विषम फलन के लिए,
प्रसिद्ध संबंध यूलर का प्रतिबिंब सूत्र इस प्रकार से है
लियोनहार्ड यूलर के कारण गामा फलन , के लिए।
सामान्य n-th क्रम बहुविवाह फलन ψ(n)(z), के लिए एक प्रतिबिंब सूत्र भी है
जोकी इस तथ्य के आसमान रूप से उत्पन्न होता है कि बहुविवाह फलन को व्युत्पन्न के रूप में परिभाषित किया गया है और इस प्रकार प्रतिबिंब सूत्र प्राप्त होता है।
रीमैन ज़ेटा फलन ζ(z) संतुष्ट करता है
और रीमैन शी समारोह ξ(z) संतुष्ट करता है