रेसट्रैक सिद्धांत: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 57: | Line 57: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 04/07/2023]] | [[Category:Created On 04/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:30, 12 July 2023
गणना में, रेसट्रैक सिद्धांत उनके यौगिक के संदर्भ में दो कार्यों की गति और वृद्धि का वर्णन करता है।
यह सिद्धांत इस तथ्य से लिया गया है कि यदि फ्रैंक फ्लीटफीट नाम का अश्व हमेशा ग्रेग गूसेलेग नाम के अश्व से शीघ्रता से दौड़ता है, तो यदि फ्रैंक और ग्रेग एक ही स्थान और एक ही समय से दौड़ प्रारम्भ करते हैं, तो फ्रैंक जीत जाएगा। संक्षेप में, जो अश्व शीघ्रता से दौड़ता है और अत्यधिक शीघ्रता से दौड़ता है तो वह जीत जाता है।
प्रतीकों में:
- अगर सभी के लिए , और अगर , तब सभी के लिए होता है।
या, > के लिए ≥ को प्रतिस्थापित करने से प्रमेय उत्पन्न होता है
- अगर सभी के लिए , और अगर , तब सभी के लिए होता है।
जिसे इसी प्रकार सिद्ध किया जा सकता है।
प्रमाण
फलन पर विचार करके इस सिद्धांत को सिद्ध किया जा सकता है। यदि हमें व्युत्पन्न लेना होता तो हम और पर ध्यान देते है,
और पर भी ध्यान दिया जाता है। इन अवलोकनों के साथ साथ, हम अंतराल पर माध्य मान प्रमेय का उपयोग कर सकते हैं और और नीचें उल्लेखित किये गयें समीकरण को प्राप्त कर सकते है
प्रकल्पना से, , इसलिए दोनों पक्षों को से गुणा किया जाता है तब यह देता है । इसका तात्पर्य यह है की होता है।
सामान्यीकरण
रेसट्रैक सिद्धांत के कथन को निम्नानुसार थोड़ा सामान्यीकृत किया जा सकता है;
- अगर सभी के लिए , और अगर , तब सभी के लिए होता है।
जैसा कि ऊपर दिया गया है, > के लिए ≥ को प्रतिस्थापित करने से प्रमेय उत्पन्न होता है
- अगर सभी के लिए , और अगर , तब सभी के लिए होता है।
प्रमाण
इस सामान्यीकरण को रेसट्रैक सिद्धांत से इस प्रकार सिद्ध किया जा सकता है:
कार्यों और पर विचार करें।
मान लें कि सभी के लिए , और होता है,
सभी के लिए , और होता है, जिसका उपरोक्त रेसट्रैक सिद्धांत के प्रमाण से अभिप्राय होता है, सभी के लिए इसलिए सभी के लिए होता है।
आवेदन
रेसट्रैक सिद्धांत का उपयोग लेम्मा को सिद्ध करने के लिए किया जा सकता है जो यह दिखाने के लिए आवश्यक होता है कि घातीय फलन किसी भी ऊर्जा समीकरण की तुलना में शीघ्रता से वृद्धि करता है। आवश्यक लेम्मा वह होता है
जो सभी वास्तविक के लिए होता है। यह स्पष्ट होता है परन्तु इसके लिए रेसट्रैक सिद्धांत आवश्यक होता है। यह देखने के लिए कि इसका उपयोग कैसे किया जाता है, हम कार्यों पर विचार करते हैं
और
ऐसा देखा जाता है की होता है ओर यह निम्लिखित प्रकार से उल्लेखित किया जाता है
क्योंकि घातांकीय फलन सदैव (एकरस ) वृधि करता रहता है और यह इस प्रकार होता है। इस प्रकार रेसट्रैक सिद्धांत द्वारा होता है।
इस प्रकार,
सभी के लिए होता है।
संदर्भ
- Deborah Hughes-Hallet, et al., Calculus.