वूरहोव सूचकांक: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (4 revisions imported from alpha:वूरहोव_सूचकांक) |
(No difference)
|
Revision as of 16:31, 13 July 2023
गणित में, वूरहोव सूचकांक जटिल संख्याओं पर कुछ फलन से जुड़ी एक गैर-नकारात्मक वास्तविक संख्या होती है, जिसका नाम मार्क वूरहोव के नाम पर रखा गया था। इसका उपयोग रोले के प्रमेय को वास्तविक कार्यों से जटिल कार्यों तक विस्तारित करने के लिए किया जा सकता है, वास्तविक कार्यों के लिए एक अंतराल में फलन के शून्य की संख्या द्वारा भूमिका प्रदर्शित की जाती है।
परिभाषा
वूरहोव सूचकांक एक जटिल-मूल्यवान फलन f जो वास्तविक अंतराल = [a, b] के एक जटिल समीपस्थ में विश्लेषणात्मक कार्य होता है जो निम्न प्रकार दिया जाता है
(विभिन्न लेखक विभिन्न सामान्यीकरण कारकों का उपयोग करते हैं।)
रोले का प्रमेय
रोले का प्रमेय बताता है कि यदि वास्तविक रेखा पर एक निरंतर विभेदित फलन एक वास्तविक-मूल्यवान फलन होता है, और , जहाँ , तो इसका व्युत्पन्न में और के मध्य एक शून्य होता है। या, अधिक सामान्यतः, यदि अंतराल निरंतर अवकलनीय फलन के शून्यों की संख्या को अंतराल पर प्रदर्शित करता है, तब होता है।
अब एक के पास रोले के प्रमेय के अनुरूप होता है:
इससे एक जटिल क्षेत्र में एक विश्लेषणात्मक फलन के शून्य की संख्या पर सीमाएं लग जाती हैं।
संदर्भ
- Voorhoeve, Marc (1976), "On the oscillation of exponential polynomials", Math. Z., 151: 277–294, doi:10.1007/bf01214940
- Khovanskii, A.; Yakovenko, S. (1996), "Generalized Rolle theorem in and ", J. Dyn. Control Syst., 2: 103–123, doi:10.1007/bf02259625