वैकल्पिक भाज्य: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:वैकल्पिक_भाज्य) |
(No difference)
|
Revision as of 16:34, 13 July 2023
गणित में, एक वैकल्पिक भाज्य धनात्मक पूर्णांको के पहले n भाज्यों के वैकल्पिक योग का निरपेक्ष मान है।
यह उनके योग के समान है, यदि n सम है, तब विषम-अनुक्रमित भाज्य को -1 से गुणा किया जाता है और यदि n विषम है तो सम-अनुक्रमित भाज्य को −1 से गुणा किया जाता है, जिसके परिणामस्वरूप योग के संकेतों में परिवर्तन होता है (या यदि पसंदीदा हो तब जोड़ और घटाव ऑपरेटरों का विकल्प)। इसे बीजगणितीय रूप से कहें तब,
या पुनरावृत्ति संबंध के साथ
जिसमें af(1) = 1.
पहले कुछ वैकल्पिक फैक्टोरियल हैं
- 1 (संख्या), 1, 5 (संख्या), 19 (संख्या), 101 (संख्या), 619, 4421, 35899, 326981, 3301819, 36614981, 442386619, 5784634181, 81393657019 आदि।
इस प्रकार उदाहरण के लिए, तीसरा वैकल्पिक भाज्य 1 है! – 2! +3!. चौथा वैकल्पिक भाज्य −1 है! + 2! −3! + 4! = 19. n की समता होने पर भी, अंतिम (nवें) सारांश, n! को एक धनात्मक संकेत दिया गया है, (n – 1)वें सारांश को एक ऋणात्मक संकेत दिया गया है और निचले के संकेत- अनुक्रमित सारांशों को तदनुसार वैकल्पिक किया जाता है।
प्रत्यावर्तन का यह पैटर्न सुनिश्चित करता है कि परिणामी योग सभी धनात्मक पूर्णांक हैं। इस प्रकार नियम को बदलने से जिससे कि विषम या सम-अनुक्रमित योगों को ऋणात्मक संकेत दिए जाएं (n की समता की परवाह किए बिना) परिणामी योगों के संकेतों को बदल देता है, किन्तु उनके पूर्ण मूल्यों को नहीं परिवर्तित करता हैं।
मियोड्रैग ज़िवकोविच ने साल 1999 में सिद्ध किया कि केवल एक सीमित संख्या में वैकल्पिक फैक्टोरियल होते हैं जो अभाज्य संख्याएँ भी होती हैं, क्योंकि 3612703 भाजक af(3612702) को विभाजित करता है और इसलिए सभी n ≥ 3612702 के लिए af(n) को विभाजित करता है। इस प्रकार साल 2006 तक, ज्ञात अभाज्य संख्याएँ और संभावित (OEIS में अनुक्रम A001272) के लिए अभाज्य संख्याएँ af(n) हैं
- n = 3, 4, 5, 6, 7, 8, 10, 15, 19, 41, 59, 61, 105, 160, 661, 2653, 3069, 3943, 4053, 4998, 8275, 9158, 11164 आदि।
इस प्रकार 2006 में केवल n = 661 तक के मान ही अभाज्य सिद्ध करना हुए हैं। af(661) लगभग 7.818097272875× 10 है।