गाऊसी समाकल (गॉसियन इंटीग्रल): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 10: Line 10:


चूँकि त्रुटि फलन के लिए कोई प्राथमिक फलन उपस्थित नहीं है, जैसा कि [[जोखिम एल्गोरिथ्म|रिस्क एल्गोरिथ्म]] द्वारा सिद्ध किया जा सकता है,<ref>{{cite journal |first=G. W. |last=Cherry |title=Integration in Finite Terms with Special Functions: the Error Function |journal=Journal of Symbolic Computation |volume=1 |issue=3 |year=1985 |pages=283–302 |doi=10.1016/S0747-7171(85)80037-7 |doi-access=free }}</ref> गॉसियन इंटीग्रल को [[ बहुचरीय कलन |बहुचरीय कलन]] के विधि के माध्यम से विश्लेषणात्मक रूप से हल किया जा सकता है। अर्थात्, इसके लिए कोई प्रारंभिक अनिश्चित अभिन्न अंग नहीं है
चूँकि त्रुटि फलन के लिए कोई प्राथमिक फलन उपस्थित नहीं है, जैसा कि [[जोखिम एल्गोरिथ्म|रिस्क एल्गोरिथ्म]] द्वारा सिद्ध किया जा सकता है,<ref>{{cite journal |first=G. W. |last=Cherry |title=Integration in Finite Terms with Special Functions: the Error Function |journal=Journal of Symbolic Computation |volume=1 |issue=3 |year=1985 |pages=283–302 |doi=10.1016/S0747-7171(85)80037-7 |doi-access=free }}</ref> गॉसियन इंटीग्रल को [[ बहुचरीय कलन |बहुचरीय कलन]] के विधि के माध्यम से विश्लेषणात्मक रूप से हल किया जा सकता है। अर्थात्, इसके लिए कोई प्रारंभिक अनिश्चित अभिन्न अंग नहीं है
<math display="block">\int e^{-x^2}\,dx,</math>
'''उदाहरण के लिए इन चरों में थोड़े से परिवर्तन के साथ इसका उपयोग [[सामान्य वितरण]] के [[सामान्यीकरण स्थिरांक]] की गणना करने के लिए किया जाता है। परिमित सीमाओं के साथ समान अभिन्न अंग'''                                                        <math display="block">\int e^{-x^2}\,dx,</math>
किंतु निश्चित अभिन्न
किंतु निश्चित अभिन्न
<math display="block">\int_{-\infty}^\infty e^{-x^2}\,dx</math>
<math display="block">\int_{-\infty}^\infty e^{-x^2}\,dx</math>
Line 44: Line 44:


====संपूर्ण प्रमाण====
====संपूर्ण प्रमाण====
अनुचित दोहरे इंटीग्रल्स को सही ठहराने और दो अभिव्यक्तियों को बराबर करने के लिए, हम अनुमानित फलन से शुरू करते हैं:
अनुचित दोहरे इंटीग्रल्स को सही ठहराने और दो अभिव्यक्तियों को बराबर करने के लिए, हम अनुमानित फलन से प्रारंभ  करते हैं:
<math display="block">I(a) = \int_{-a}^a e^{-x^2}dx.</math>
<math display="block">I(a) = \int_{-a}^a e^{-x^2}dx.</math>
यदि अभिन्न
यदि अभिन्न

Revision as of 15:32, 8 July 2023

फलन का एक ग्राफ़ और इसके और -अक्ष के बीच का क्षेत्र, (यानी संपूर्ण वास्तविक रेखा) जो के बराबर है।.


गॉसियन इंटीग्रल, जिसे यूलर-पॉइसन इंटीग्रल के रूप में भी जाना जाता है, संपूर्ण वास्तविक रेखा पर गॉसियन फलन का इंटीग्रल है। इंटीग्रल का नाम जर्मन गणितज्ञ कार्ल फ्रेडरिक गॉस के नाम पर रखा गया है

अब्राहम डी मोइवरे ने मूल रूप से इस प्रकार के इंटीग्रल की खोज 1733 में की थी, जबकि गॉस ने स्पष्ट इंटीग्रल को 1809 में प्रकाशित किया था।[1] जिसे इंटीग्रल में अनुप्रयोगों की विस्तृत श्रृंखला है। उदाहरण के लिए इन चरों में थोड़े से परिवर्तन के साथ इसका उपयोग सामान्य वितरण के सामान्यीकरण स्थिरांक की गणना करने के लिए किया जाता है। परिमित सीमाओं के साथ समान अभिन्न अंग त्रुटि फलन और सामान्य वितरण के संचयी वितरण फलन दोनों से निकटता से संबंधित है। भौतिकी में इस प्रकार का अभिन्न अंग प्रायः दिखाई देता है, उदाहरण के लिए, क्वांटम यांत्रिकी में, हार्मोनिक ऑसिलेटर की जमीनी स्थिति की संभाव्यता घनत्व का पता लगाने के लिए इस इंटीग्रल का उपयोग पथ इंटीग्रल सूत्रीकरण में, हार्मोनिक ऑसिलेटर के प्रोपेगेटर को खोजने के लिए और सांख्यिकीय यांत्रिकी में, इसके विभाजन फलन (सांख्यिकीय यांत्रिकी) को खोजने के लिए भी किया जाता है।

चूँकि त्रुटि फलन के लिए कोई प्राथमिक फलन उपस्थित नहीं है, जैसा कि रिस्क एल्गोरिथ्म द्वारा सिद्ध किया जा सकता है,[2] गॉसियन इंटीग्रल को बहुचरीय कलन के विधि के माध्यम से विश्लेषणात्मक रूप से हल किया जा सकता है। अर्थात्, इसके लिए कोई प्रारंभिक अनिश्चित अभिन्न अंग नहीं है उदाहरण के लिए इन चरों में थोड़े से परिवर्तन के साथ इसका उपयोग सामान्य वितरण के सामान्यीकरण स्थिरांक की गणना करने के लिए किया जाता है। परिमित सीमाओं के साथ समान अभिन्न अंग

किंतु निश्चित अभिन्न
मूल्यांकन किया जा सकता है. इच्छानुसार गाऊसी फलन का निश्चित अभिन्न अंग है


गणना

ध्रुवीय निर्देशांक द्वारा

गॉसियन इंटीग्रल की गणना करने का मानक विधि, जिसका विचार पॉइसन से मिलता है,[3] उस संपत्ति का उपयोग करना है जो:

फलन पर विचार करें विमान पर , और इसके अभिन्न दो विधि की गणना करें:

  1. एक ओर, कार्टेशियन समन्वय प्रणाली में दोहरे एकीकरण द्वारा, इसका अभिन्न अंग वर्ग है:
  2. दूसरी ओर, शेल एकीकरण (ध्रुवीय निर्देशांक में दोहरे एकीकरण का स्थिति ) द्वारा, इसके अभिन्न अंग की गणना की जाती है।

इन दोनों गणनाओं की तुलना करने से अभिन्न प्राप्त होता है, चूँकि इसमें सम्मिलित अनुचित अभिन्नों के बारे में ध्यान रखना चाहिए।

जहां r का कारक जैकोबियन निर्धारक है जो ध्रुवीय निर्देशांक में परिवर्तन के कारण प्रकट होता है (r dr समतल पर मानक माप है, जिसे ध्रुवीय निर्देशांक विकीबुक्स: कैलकुलस/ध्रुवीय एकीकरण या सामान्यीकरण में व्यक्त किया गया है), और प्रतिस्थापन में s = −r2 लेना सम्मिलित है इसलिए ds = −2r drइन उत्पत्ति का संयोजन

इसलिए


संपूर्ण प्रमाण

अनुचित दोहरे इंटीग्रल्स को सही ठहराने और दो अभिव्यक्तियों को बराबर करने के लिए, हम अनुमानित फलन से प्रारंभ करते हैं:

यदि अभिन्न
यदि हम पूरी तरह से अभिसरण होते तो हमें यह पता चलता कि इसकी कॉची प्रमुख मान ही सीमा है
के साथ मेल खाएगा
यह देखने के लिए कि यह स्थिति है, उस पर विचार करें

तो हम गणना कर सकते हैं
बस सीमा लेकर
का वर्ग लेना उत्पत्ति

फ़ुबिनी के प्रमेय का उपयोग करते हुए, उपरोक्त दोहरे समाकलन को क्षेत्र समाकलन के रूप में देखा जा सकता है
xy-तल पर शीर्षों {(−a, a), (a, a), (a, −a), (−a, −a)} वाले एक वर्ग पर अधिकृत कर लिया गया था।

चूँकि सभी वास्तविक संख्याओं के लिए घातीय फलन 0 से अधिक है, तो इससे यह निष्कर्ष निकलता है कि वर्ग के परिवृत्त पर लिया गया समाकलन से कम होना चाहिए, और इसी प्रकार वर्ग के परिवृत्त पर लिया गया समाकलन इससे अधिक होना चाहिए कार्टेशियन निर्देशांक से ध्रुवीय निर्देशांक पर स्विच करके दो डिस्क पर इंटीग्रल की गणना आसानी से की जा सकती है:

(ध्रुवीय परिवर्तन में सहायता के लिए विहित समन्वय परिवर्तनों की सूची देखें।)

एकीकरण,

स्क़ुईज़ प्रमेय के अनुसार, यह गाऊसी अभिन्न अंग देता है


कार्तीय निर्देशांक द्वारा

एक अलग तकनीक, जो लाप्लास (1812) से चली आ रही है,[3] निम्नलिखित है। होने देना

चूँकि y → ±∞ के रूप में s की सीमाएँ x के चिह्न पर निर्भर करती हैं, यह इस तथ्य का उपयोग करके गणना को सरल बनाता है कि ex2 एक सम फलन है, और, इसलिए, सभी वास्तविक संख्याओं पर समाकलन, से समाकलन का केवल दोगुना है शून्य से अनंत तक वह है,

इस प्रकार, एकीकरण की सीमा पर, x ≥ 0, और चर y और s की सीमाएँ समान हैं। यह प्रदान करता है:
फिर, एकीकरण के क्रम (कैलकुलस) को बदलने के लिए फ़ुबिनी के प्रमेय का उपयोग किया जाता है:
इसलिए, , आशा के अनुसार।

लाप्लास की विधि से

लाप्लास सन्निकटन में, हम टेलर विस्तार में केवल दूसरे क्रम की नियमो से निपटते हैं, इसलिए हम विचार करते हैं

.

वास्तव में, तब से सभी के लिए , हमारे पास स्पष्ट सीमाएँ हैं:

फिर हम लाप्लास सन्निकटन सीमा पर बाध्य कर सकते हैं:
वह है,
त्रिकोणमितीय प्रतिस्थापन द्वारा, हम उन दो सीमाओं की सटीक गणना करते हैं: और वालिस सूत्र का वर्गमूल लेकर,
हमारे पास वांछित ऊपरी सीमा है। इसी प्रकार हम वांछित निचली सीमा प्राप्त कर सकते हैं। इसके विपरीत, यदि हम पहले उपरोक्त अन्य विधि में से किसी एक के साथ अभिन्न की गणना करते हैं, तो हमें वालिस सूत्र का प्रमाण प्राप्त होगा।

आयतन विधि

मान लीजिए, सकारात्मक स्थिरांक के लिए,

जो ये दर्शाता हे
होने देना
इसलिए
की प्रोफ़ाइल है. यह देखना आसान है कि के नीचे और से ऊपर के क्षेत्र का आयतन, जो कि 1 है, वृत्त के क्षेत्र, जो कि है, को मान की त्रिज्या के साथ एकीकृत करके प्राप्त किया जा सकता है। वह और के बीच। वह है
या


गामा फलन से संबंध

इंटीग्रैंड सम कार्य है,

इस प्रकार, चर के परिवर्तन के बाद, यह यूलर इंटीग्रल में बदल जाता है

जहां गामा फ़ंक्शन है। इससे पता चलता है कि अर्ध-पूर्णांक का फैक्टोरियल का तर्कसंगत गुणज क्यों है। सामान्यतः अधिक है,
जिसे प्राप्त करने के लिए गामा फ़ंक्शन के इंटीग्रैंड में को प्रतिस्थापित करके प्राप्त किया जा सकता है

सामान्यीकरण

गाऊसी फलन का अभिन्न अंग

एक इच्छानुसार गाऊसी फलन का अभिन्न अंग है

एक वैकल्पिक रूप है
यह रूप सामान्य वितरण से संबंधित कुछ निरंतर संभाव्यता वितरणों की अपेक्षाओं की गणना के लिए उपयोगी है, जैसे उदाहरण के लिए लॉग-सामान्य वितरण है।

एन-आयामी और कार्यात्मक सामान्यीकरण

मान लीजिए A सममित सकारात्मक-निश्चित है (इसलिए उलटा) n × n परिशुद्धता आव्यूह , जो सहप्रसरण आव्यूह का व्युत्क्रम आव्यूह है। तब,

यह तथ्य बहुभिन्नरूपी सामान्य वितरण के अध्ययन में प्रयुक्त किया जाता है।

भी,

जहां σ {1, …, 2N} का क्रमपरिवर्तन है और दाईं ओर अतिरिक्त कारक A−1 की N प्रतियों के {1, …, 2N} के सभी संयोजन युग्मों का योग है।[4]

वैकल्पिक रूप से,[4]

कुछ विश्लेषणात्मक फलन एफ के लिए, परन्तु कि यह इसके विकास और कुछ अन्य तकनीकी मानदंडों पर कुछ उचित सीमाओं को पूरा करता हो। (यह कुछ कार्यों के लिए काम करता है और दूसरों के लिए विफल रहता है। बहुपद ठीक हैं।) अंतर ऑपरेटर पर घातांक को शक्ति श्रृंखला के रूप में समझा जाता है।

जबकि कार्यात्मक इंटीग्रल्स की कोई कठोर परिभाषा नहीं है (या अधिकत्तर स्थिति में गैर-कठोर कम्प्यूटेशनल भी), हम परिमित-आयामी स्थिति के अनुरूप गाऊसी कार्यात्मक इंटीग्रल को परिभाषित कर सकते हैं। चूँकि, अभी भी समस्या है कि अनंत है और साथ ही, कार्यात्मक निर्धारक भी सामान्य रूप से अनंत होगा। यदि हम केवल अनुपातों पर विचार करें तो इसका ध्यान रखा जा सकता है: