स्क्वीज़ प्रमेय: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
}} | }} | ||
* | * फलन <math display="inline">g</math> और <math display="inline">h</math> को क्रमशः <math display="inline">f</math> की निचली और [[ऊपरी सीमा]] कहा जाता है। | ||
* यहां, <math display="inline">a</math> का <math display="inline">I</math> के [[आंतरिक (टोपोलॉजी)]] भाग में स्थित होना आवश्यक नहीं है। वास्तविक में, यदि <math display="inline">a</math> <math display="inline">I</math> का एक समापन बिंदु है, तो उपरोक्त सीमाएँ बाएँ या दाएँ हाथ की सीमाएँ हैं। | |||
* समान कथन अनंत अंतरालों के लिए लागू होता है: उदाहरण के लिए, यदि <math display="inline">I=(0, \infty)</math>, तो निष्कर्ष | *एक समान कथन अनंत अंतरालों के लिए लागू होता है: उदाहरण के लिए, यदि <math display="inline">I=(0, \infty)</math>, तो निष्कर्ष <math display="inline">x \to \infty</math> के रूप में सीमा लेता है। | ||
यह प्रमेय अनुक्रमों के लिए भी मान्य है। | यह प्रमेय अनुक्रमों के लिए भी मान्य है। मान लीजिए <math>(a_n), (c_n)</math> दो अनुक्रम हैं जो <math>\ell</math> और <math>(b_n)</math> अनुक्रम में परिवर्तित हो रहे हैं। यदि <math>\forall n\geq N, N\in\N</math> हमारे पास <math>a_n\leq b_n\leq c_n</math> है, तो <math>(b_n)</math> भी <math>\ell</math> में परिवर्तित हो जाता है। | ||
===प्रमाण=== | ===प्रमाण=== | ||
Line 27: | Line 27: | ||
इसलिए सभी असमानताएँ वास्तव में समानताएँ हैं, और थीसिस तुरंत अनुसरण करती है। | इसलिए सभी असमानताएँ वास्तव में समानताएँ हैं, और थीसिस तुरंत अनुसरण करती है। | ||
एक प्रत्यक्ष प्रमाण, सीमा की <math>(\varepsilon, \delta)</math>-परिभाषा का उपयोग करते हुए, यह सिद्ध करना होगा कि सभी वास्तविक <math display="inline">\varepsilon > 0</math> के लिए एक वास्तविक <math>\delta > 0</math> उपस्थित है जैसे कि <math>|x - a| < \delta</math> वाले सभी <math>x</math> के लिए हमारे पास <math>|f(x) - L| < \varepsilon</math> है। प्रतीकात्मक रूप से, | |||
<math display="block"> \forall \varepsilon > 0, \exists \delta > 0 : \forall x, (|x - a | < \delta \ \Rightarrow |f(x) - L |< \varepsilon).</math> | <math display="block"> \forall \varepsilon > 0, \exists \delta > 0 : \forall x, (|x - a | < \delta \ \Rightarrow |f(x) - L |< \varepsilon).</math> | ||
Line 33: | Line 33: | ||
<math display="block">\lim_{x \to a} g(x) = L </math> | <math display="block">\lim_{x \to a} g(x) = L </math> | ||
अर्थात् | |||
{{NumBlk||<math display="block"> \forall \varepsilon > 0, \exists \ \delta_1 > 0 : \forall x\ (|x - a| < \delta_1 \ \Rightarrow \ |g(x) - L |< \varepsilon).</math>|{{EquationRef|1}}}} | {{NumBlk||<math display="block"> \forall \varepsilon > 0, \exists \ \delta_1 > 0 : \forall x\ (|x - a| < \delta_1 \ \Rightarrow \ |g(x) - L |< \varepsilon).</math>|{{EquationRef|1}}}} | ||
और | और | ||
<math display="block">\lim_{x \to a} h(x) = L </math> | <math display="block">\lim_{x \to a} h(x) = L </math> | ||
अर्थात् | |||
{{NumBlk||<math display="block"> \forall \varepsilon > 0, \exists \ \delta_2 > 0 : \forall x\ (|x - a | < \delta_2\ \Rightarrow \ |h(x) - L |< \varepsilon), </math>|{{EquationRef|2}}}} | {{NumBlk||<math display="block"> \forall \varepsilon > 0, \exists \ \delta_2 > 0 : \forall x\ (|x - a | < \delta_2\ \Rightarrow \ |h(x) - L |< \varepsilon), </math>|{{EquationRef|2}}}} | ||
तो हमारे पास हैं | तो हमारे पास हैं | ||
<math display="block">g(x) \leq f(x) \leq h(x) </math> | <math display="block">g(x) \leq f(x) \leq h(x) </math><math display="block">g(x) - L\leq f(x) - L\leq h(x) - L</math> | ||
<math display="block">g(x) - L\leq f(x) - L\leq h(x) - L</math> | हम <math>\delta:=\min\left\{\delta_1,\delta_2\right\}</math> चुन सकते हैं। फिर, यदि <math>|x - a| < \delta</math>, ({{EquationNote|1}}) और ({{EquationNote|2}}) को मिलाकर, हमारे पास है | ||
हम | |||
<math display="block"> - \varepsilon < g(x) - L\leq f(x) - L\leq h(x) - L\ < \varepsilon, </math> | <math display="block"> - \varepsilon < g(x) - L\leq f(x) - L\leq h(x) - L\ < \varepsilon, </math><math display="block"> - \varepsilon < f(x) - L < \varepsilon ,</math> | ||
<math display="block"> - \varepsilon < f(x) - L < \varepsilon ,</math> | |||
जो प्रमाण को पूरा करता है। क्यू.ई.डी | जो प्रमाण को पूरा करता है। क्यू.ई.डी | ||
किसी अनुक्रम की सीमा की <math>\varepsilon</math>-परिभाषा का उपयोग करते हुए, अनुक्रमों के लिए प्रमाण बहुत समान है। | |||
== उदाहरण == | == उदाहरण == | ||
Line 67: | Line 65: | ||
<math display="block">\lim_{x\to 0}\sin(\tfrac{1}{x})</math> | <math display="block">\lim_{x\to 0}\sin(\tfrac{1}{x})</math> | ||
उपस्थित नहीं होना। | |||
हालाँकि, [[साइन फ़ंक्शन|साइन फलन]] की परिभाषा के अनुसार, | हालाँकि, [[साइन फ़ंक्शन|साइन फलन]] की परिभाषा के अनुसार, |
Revision as of 08:09, 10 July 2023
कैलकुलस में, स्क्वीज़ प्रमेय (इसे अन्य नामों के साथ-साथ सैंडविच प्रमेय के रूप में भी जाना जाता है[lower-alpha 1]) एक फलन की सीमा के बारे में एक प्रमेय है जो दो अन्य फलनों के बीच फंसा हुआ है।
स्क्वीज़ प्रमेय का उपयोग कैलकुलस और गणितीय विश्लेषण में किया जाता है, सामान्यतः दो अन्य फलनों के साथ तुलना के माध्यम से फलन की सीमा की पुष्टि करने के लिए जिनकी सीमाएं ज्ञात होती हैं। इसका पहली बार ज्यामितीय रूप से उपयोग गणितज्ञ आर्किमिडीज़ और कनिडस के यूडोक्सस द्वारा π की गणना करने के प्रयास में किया गया था, और कार्ल फ्रेडरिक गॉस द्वारा आधुनिक शब्दों में तैयार किया गया था।
कथन
स्क्वीज़ प्रमेय औपचारिक रूप से इस प्रकार बताया गया है।[1]
Theorem — मान लीजिए I एक अंतराल है जिसमें बिंदु a है। मान लीजिए कि g, f, और h, संभवतः a को छोड़कर, I पर परिभाषित फ़ंक्शन हैं। मान लीजिए कि I में प्रत्येक x के लिए a के बराबर नहीं है, हमारे पास है
तब
- फलन और को क्रमशः की निचली और ऊपरी सीमा कहा जाता है।
- यहां, का के आंतरिक (टोपोलॉजी) भाग में स्थित होना आवश्यक नहीं है। वास्तविक में, यदि का एक समापन बिंदु है, तो उपरोक्त सीमाएँ बाएँ या दाएँ हाथ की सीमाएँ हैं।
- एक समान कथन अनंत अंतरालों के लिए लागू होता है: उदाहरण के लिए, यदि , तो निष्कर्ष के रूप में सीमा लेता है।
यह प्रमेय अनुक्रमों के लिए भी मान्य है। मान लीजिए दो अनुक्रम हैं जो और अनुक्रम में परिवर्तित हो रहे हैं। यदि हमारे पास है, तो भी में परिवर्तित हो जाता है।
प्रमाण
उपरोक्त परिकल्पनाओं के अनुसार, हम निम्न और श्रेष्ठ की सीमा लेते हैं:
एक प्रत्यक्ष प्रमाण, सीमा की -परिभाषा का उपयोग करते हुए, यह सिद्ध करना होगा कि सभी वास्तविक के लिए एक वास्तविक उपस्थित है जैसे कि वाले सभी के लिए हमारे पास है। प्रतीकात्मक रूप से,
|
(1) |
और
अर्थात्
|
(2) |
तो हमारे पास हैं
किसी अनुक्रम की सीमा की -परिभाषा का उपयोग करते हुए, अनुक्रमों के लिए प्रमाण बहुत समान है।
उदाहरण
पहला उदाहरण
सीमा
हालाँकि, साइन फलन की परिभाषा के अनुसार,
दूसरा उदाहरण
संभवतः स्क्वीज़कर सीमा खोजने के सबसे प्रसिद्ध उदाहरण समानता के प्रमाण हैं
इन दो सीमाओं का उपयोग इस तथ्य के प्रमाण में किया जाता है कि साइन फलन का व्युत्पन्न कोसाइन फलन है। त्रिकोणमितीय फलनों के व्युत्पन्नों के अन्य प्रमाणों में उस तथ्य पर भरोसा किया जाता है।
तीसरा उदाहरण
यह दिखाना संभव है
दाईं ओर के चित्रण में, वृत्त के दो छायांकित क्षेत्रों में से छोटे का क्षेत्रफल है
चौथा उदाहरण
स्क्वीज़ प्रमेय का उपयोग अभी भी बहुपरिवर्तनीय कैलकुलस में किया जा सकता है, लेकिन निचला (और ऊपरी फलन) लक्ष्य फलन के नीचे (और ऊपर) होना चाहिए, न कि केवल पथ के साथ, बल्कि रुचि के बिंदु के पूरे पड़ोस के आसपास और यह केवल तभी काम करता है जब फलन वास्तव में वहां सीमा है। इसलिए, इसका उपयोग यह साबित करने के लिए किया जा सकता है कि किसी फलन की बिंदु पर सीमा होती है, लेकिन इसका उपयोग यह साबित करने के लिए कभी नहीं किया जा सकता है कि किसी फलन की किसी बिंदु पर कोई सीमा नहीं होती है।[3]
संदर्भ
टिप्पणियाँ
- ↑ Also known as the pinching theorem, the sandwich rule, the police theorem, the between theorem and sometimes the squeeze lemma. In Italy, the theorem is also known as the theorem of carabinieri.
संदर्भ
- ↑ Sohrab, Houshang H. (2003). बुनियादी वास्तविक विश्लेषण (2nd ed.). Birkhäuser. p. 104. ISBN 978-1-4939-1840-9.
- ↑ Selim G. Krejn, V.N. Uschakowa: Vorstufe zur höheren Mathematik. Springer, 2013, ISBN 9783322986283, pp. 80-81 (German). See also Sal Khan: Proof: limit of (sin x)/x at x=0 (video, Khan Academy)
- ↑ Stewart, James (2008). "Chapter 15.2 Limits and Continuity". बहुपरिवर्तनीय कलन (6th ed.). pp. 909–910. ISBN 978-0495011637.
बाहरी संबंध
- Weisstein, Eric W. "Squeezing Theorem". MathWorld.
- Squeeze Theorem by Bruce Atwood (Beloit College) after work by, Selwyn Hollis (Armstrong Atlantic State University), the Wolfram Demonstrations Project.
- Squeeze Theorem on ProofWiki.