नोव्हेयर सघन समुच्चय (नोव्हेयर डेंस सेट): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 69: Line 69:
यह <math>S_{r/2} \subseteq U_r \subseteq S_r \subseteq U_{2r}.</math> को संतुष्ट करता है क्योंकि <math>\R \setminus S_r</math> का एक उपसमुच्चय है, वह उपसमुच्चय <math>\R \setminus U_r,</math> में कहीं भी सघन नहीं है, यह <math>\R.</math> में कहीं भी सघन नहीं है, क्योंकि <math>\R</math> एक [[बाहर जगह|बेयर स्पेस]] है, समुच्चय
यह <math>S_{r/2} \subseteq U_r \subseteq S_r \subseteq U_{2r}.</math> को संतुष्ट करता है क्योंकि <math>\R \setminus S_r</math> का एक उपसमुच्चय है, वह उपसमुच्चय <math>\R \setminus U_r,</math> में कहीं भी सघन नहीं है, यह <math>\R.</math> में कहीं भी सघन नहीं है, क्योंकि <math>\R</math> एक [[बाहर जगह|बेयर स्पेस]] है, समुच्चय
<math display="block">D := \bigcap_{m=1}^{\infty} U_{1/m} = \bigcap_{m=1}^{\infty} S_{1/m}</math>
<math display="block">D := \bigcap_{m=1}^{\infty} U_{1/m} = \bigcap_{m=1}^{\infty} S_{1/m}</math>
जहाँ <math>\R</math> सघन उपसमुच्चय है  (जिसका अर्थ है कि इसके उपसमुच्चय की तरह <math>\Q,</math> <math>D</math> संभवतः <math>\R</math> कहीं सघन नहीं हो सकता ) साथ <math>0</math> लेब्सेग माप जो कि [[नॉनमेजर सेट|नॉनमेजर समुच्चय <math>\R</math>]] भी है  (वह है, <math>D</math> में [[दूसरी श्रेणी]] का है <math>\R</math>), किसने बनाया <math>\R \setminus D</math> का [[कॉमेजर सेट|कॉमेजर समुच्चय]]  <math>\R</math> जिसका आंतरिक भाग <math>\R</math> खाली भी है; चूँकि , <math>\R \setminus D</math> कहीं भी सघन नहीं है <math>\R</math> यदि और केवल यदि ऐसा है {{em|closure}} में <math>\R</math> खाली आंतरिक भाग है.
जहाँ <math>\R</math> सघन उपसमुच्चय है  (जिसका अर्थ है कि इसके उपसमुच्चय की तरह <math>\Q,</math> <math>D</math> संभवतः <math>\R</math> कहीं सघन नहीं हो सकता ) साथ <math>0</math> लेब्सेग माप जो कि [[नॉनमेजर सेट|नॉनमेजर समुच्चय <math>\R</math>]] भी है  ( अर्थात्, <math>D</math>, <math>D</math> में [[दूसरी श्रेणी]] का है), जो <math>\R \setminus D</math> को <math>\R</math> का एक लघु उपसमुच्चय बनाता है जिसका <math>\R</math> में आंतरिक भाग भी खाली है; चूँकि <math>\R \setminus D</math>, <math>\R</math> में कहीं भी सघन नहीं है यदि और केवल यदि <math>\R</math> में इसके {{em|closure}} दहोने का आंतरिक भाग खाली है।,
 
इस उदाहरण में उपसमुच्चय <math>\Q</math> को R के किसी भी गणनीय सघन उपसमुच्चय द्वारा प्रतिस्थापित किया जा सकता है और इसके अतिरिक्त, समुच्चय <math>\R</math> को किसी भी पूर्णांक <math>n > 0.</math> के लिए <math>\R</math><sup>n</sup> द्वारा प्रतिस्थापित किया जा सकता है।


उपसमुच्चय <math>\Q</math> इस उदाहरण में किसी भी गणनीय सघन उपसमुच्चय द्वारा प्रतिस्थापित किया जा सकता है <math>\R</math> और इसके अलावा, समुच्चय  भी <math>\R</math> द्वारा प्रतिस्थापित किया जा सकता है <math>\R^n</math> किसी भी पूर्णांक के लिए <math>n > 0.</math>
== यह भी देखें ==
== यह भी देखें ==


* {{annotated link|Baire space}}
* {{annotated link|बेयर स्पेस}}
* {{annotated link|Fat Cantor set}}
* {{annotated link|फैट कैंटर सेट}}
* {{annotated link|Meagre set}}
* {{annotated link|अल्प सेट}}


== संदर्भ ==
== संदर्भ ==

Revision as of 16:41, 7 July 2023

गणित में, टोपोलॉजिकल स्पेस के समुच्चय (गणित) को नोव्हेयर डेंस या रेयर कहा जाता है[1][2] या दुर्लभ[3] यदि इसके समापन (टोपोलॉजी) में खाली समुच्चय आंतरिक (टोपोलॉजी) है। बहुत ही ढीले अर्थ में, यह ऐसा समुच्चय है जिसके तत्व कहीं भी कसकर क्लस्टर नहीं किए गए हैं (जैसा कि टोपोलॉजिकल स्पेस या परिभाषाओं द्वारा परिभाषित किया गया है)। इस प्रकार से उदाहरण के लिए, वास्तविक संख्याओं में पूर्णांक कहीं भी सघन नहीं हैं, जबकि अंतराल (गणित) (0, 1) कहीं भी सघन नहीं है।

किन्तु कहीं सघन समुच्चययों का गणनीय संघ अल्प समुच्चयय कहलाता है। बेयर श्रेणी प्रमेय के निर्माण में अल्प समुच्चय महत्वपूर्ण भूमिका निभाते हैं, जिसका उपयोग कार्यात्मक विश्लेषण के कई मौलिक परिणामों के प्रमाण में किया जाता है।

परिभाषा

घनत्व को कहीं भी अलग-अलग (किन्तु समतुल्य) विधियों से चित्रित नहीं किया जा सकता है। घनत्व से सबसे सरल परिभाषा है:

<ब्लॉककोट>

एक उपसमुच्चय टोपोलॉजिकल स्पेस का दूसरे समुच्चय में घना कहा जाता है यदि इन्टरसेक्शन का सघन समुच्चयय है है कहीं सघन नहीं या रेर में यदि किसी भी गैररिक्त खुले उपसमुच्चय में सघन नहीं है का </ब्लॉककोट>

घनत्व के निषेध का विस्तार करते हुए, यह प्रत्येक गैर-रिक्त खुले समुच्चय की आवश्यकता के समान है से असंयुक्त गैर-रिक्त विवर्त उपसमुच्चय सम्मिलित है {{sfn|Fremlin|2002|loc=3A3F(a)}आधार (टोपोलॉजी) के लिए बेस (टोपोलॉजी) पर किसी भी स्थिति की जांच करना पर्याप्त है विशेषकर, घनत्व कहीं नहीं इसे सदैव बिना किसी खुले अंतराल के सघन होने के रूप में वर्णित किया जाता है।[4][5]

समापन द्वारा परिभाषा

उपरोक्त दूसरी परिभाषा बंद करने की आवश्यकता के समान है, में कोई भी गैररिक्त विवर्त समुच्चय नहीं हो सकता है ।[6]

यह कहने के समान है कि के बंद होने का आंतरिक भाग खाली है; [7]

[8][9]

वैकल्पिक रूप से, समवर्त का पूरक X का सघन उपसमुच्चय होना चाहिए, दूसरे शब्दों में, S का बाहरी भाग X में सघन है।[7]


यह कहने के समान है कि क्लोजर (टोपोलॉजी) का इंटीरियर (टोपोलॉजी)। खाली है; वह है, <ब्लॉककोट> वैकल्पिक रूप से, समापन का पूरक का सघन उपसमुच्चय होना चाहिए दूसरे शब्दों में, का बाहरी भाग (टोपोलॉजी)। में सघन है

वैकल्पिक रूप से, क्लोजर XCLSX

गुण

कहीं भी घने समुच्चय की धारणा सदैव किसी दिए गए आसपास के स्थान से संबंधित नहीं होती है। कल्पना करना जहाँ सबस्पेस टोपोलॉजी से प्रेरित है समुच्चय हो सकता है कि वह कहीं भी सघन न हो किन्तु कहीं भी सघन नहीं विशेष रूप से, समुच्चय सदैव अपने उप-स्थान टोपोलॉजी में सघन होता है। तो यदि गैर-रिक्त है, यह स्वयं के उपसमुच्चय के रूप में कहीं भी सघन नहीं होगा। चूँकि निम्नलिखित परिणाम कायम हैं:[10][11]

  • यदि कहीं भी सघन नहीं है तब कहीं भी सघन नहीं है
  • यदि ,में विवर्त है तब कहीं भी सघन नहीं है यदि और केवल यदि कहीं भी सघन नहीं है
  • यदि में , सघन है तब कहीं भी सघन नहीं है यदि और केवल यदि कहीं भी सघन नहीं है

एक समुच्चयय कहीं भी सघन नहीं है यदि और केवल यदि उसका समापन हो।[1]

कहीं भी सघन समुच्चयय का प्रत्येक उपसमुच्चय कहीं भी सघन नहीं है, और कहीं नहीं सघन समुच्चययों का परिमित संघ (समुच्चय सिद्धांत) कहीं भी सघन नहीं है।[12] इस प्रकार कहीं भी सघन समुच्चयय समुच्चययों का आदर्श नहीं, नगण्य समुच्चयय की उपयुक्त धारणा बनाते हैं। सामान्य तौर पर वे सिग्मा-आदर्श नहीं बनाते हैं|𝜎-आदर्श, क्योंकि अल्प समुच्चयय, जो कहीं सघन समुच्चययों के गणनीय संघ नहीं हैं, कहीं सघन नहीं होने चाहिए। उदाहरण के लिए, समुच्चय कहीं भी सघन नहीं है प्रत्येक खुले समुच्चय और प्रत्येक बंद समुच्चय की सीमा (टोपोलॉजी) बंद है और कहीं घनी नहीं है।[13][2] बंद समुच्चय कहीं भी सघन नहीं है यदि और केवल यदि यह इसकी सीमा के समान है,[13] यदि और केवल यदि यह किसी खुले समुच्चय की सीमा के समान है[2] (उदाहरण के लिए खुले समुच्चय को समुच्चय के पूरक के रूप में लिया जा सकता है)। मनमाना समुच्चय कहीं भी सघन नहीं है यदि और केवल यदि यह किसी खुले समुच्चय की सीमा का उपसमुच्चय है (उदाहरण के लिए खुले समुच्चय को बाहरी (टोपोलॉजी) के रूप में लिया जा सकता है) ).

उदाहरण

  • समुच्चय और उसका बंद होना कहीं सघन नहीं हैं चूँकि क्लोजर का आंतरिक भाग खाली है।
  • यूक्लिडियन विमान में क्षैतिज अक्ष कहीं भी सघन नहीं है
  • कहीं भी सघन नहीं है किन्तु तर्कसंगत नहीं हैं (वे हर जगह घने हैं)।
  • है not कहीं भी सघन नहीं : यह खुले अंतराल में सघन है और विशेष रूप से इसके बंद होने का आंतरिक भाग है
  • खाली समुच्चय कहीं सघन नहीं है। असतत स्थान में, रिक्त समुच्चयय है only कहीं सघन समुच्चय नहीं है।[14]
  • T1 स्थान में T1 अंतरिक्ष, कोई भी एकल समुच्चयय जो पृथक बिंदु नहीं है, कहीं भी सघन नहीं है।
  • टोपोलॉजिकल वेक्टर उपस्थान का वेक्टर उपस्पेस या तो सघन है या कहीं भी सघन नहीं है।[15]

सकारात्मक माप के साथ सघन समुच्चयय नहीं है

कहीं भी सघन समुच्चयय आवश्यक रूप से हर दृष्टि से नगण्य नहीं है। उदाहरण के लिए, यदि इकाई अंतराल है न केवल लेब्सेग माप शून्य का सघन समुच्चय होना संभव है (जैसे कि परिमेय का समुच्चय ), किन्तु सकारात्मक माप के साथ कहीं न कहीं सघन समुच्चय होना भी संभव है।

स प्रकार से उदाहरण के लिए (कैंटर समुच्चय का प्रकार), इसे हटा दें सभी डायडिक भिन्न, अर्थात रूप के भिन्न धनात्मक पूर्णांकों के लिए न्यूनतम पदों में और उनके चारों ओर का अंतराल: चूंकि प्रत्येक के लिए यह अधिक से अधिक जोड़ने वाले अंतरालों को हटा देता है ऐसे सभी अंतरालों को हटा दिए जाने के बाद जो कहीं भी सघन समुच्चयय नहीं बचा है उसका माप कम से कम है (वास्तव में अभी ख़त्म हुआ ओवरलैप्स के कारण) और इसलिए अर्थ में परिवेश स्थान के बहुमत का प्रतिनिधित्व करता है यह समुच्चय कहीं भी सघन नहीं है, क्योंकि यह बंद है और इसका आंतरिक भाग खाली है: कोई भी अंतराल डायडिक भिन्नों के बाद से समुच्चय में सम्मिलित नहीं है हटा दिया गया है।

इस प्रकार से उदाहरण के लिए (कैंटर समुच्चय का एक प्रकार), से सभी डायडिक अंशों को हटा दें, अर्थात सकारात्मक पूर्णांक के लिए निम्नतम शब्दों में फॉर्म के अंश और उनके आसपास के अंतराल चूंकि प्रत्येक के लिए यह अधिकतम जोड़ने वाले अंतराल को हटा देता है 12एन2 ऐसे सभी अंतरालों को हटा दिए जाने के बाद शेष कहीं भी सघन सेट का माप कम से कम (वास्तव में अभी ख़त्म हुआ ओवरलैप्स के कारण[16]) है और इसलिए एक अर्थ में परिवेश स्थान के बहुमत का प्रतिनिधित्व करता है यह सेट कहीं भी सघन नहीं है, चूँकि यह बंद है और इसका आंतरिक भाग खाली है: कोई भी अंतराल समुच्चय में सम्मिलित नहीं है क्योंकि में डायडिक अंश हटा दिए गए हैं।

इस पद्धति को सामान्यीकृत करते हुए, कोई इकाई अंतराल में कहीं भी किसी भी माप से कम के घने समुच्चय का निर्माण नहीं कर सकता है चूँकि माप बिल्कुल 1 नहीं हो सकता (क्योंकि अन्यथा इसके समापन का पूरक माप शून्य के साथ गैर-रिक्त विवर्त समुच्चय होगा, जो असंभव है)।[17]

इस प्रकार से सरल उदाहरण के लिए, यदि का का कोई सघन विवर्त उपसमुच्चय है तब परिमित लेबेस्ग्यू माप होना आवश्यक रूप से इसका बंद उपसमुच्चय है अनंत लेबेस्ग्यू माप वाला जो कहीं भी सघन नहीं है (क्योंकि इसका टोपोलॉजिकल इंटीरियर खाली है)। इतना घना विवर्त उपसमुच्चय परिमित लेब्सेग माप का निर्माण आमतौर पर तब किया जाता है जब यह साबित किया जाता है कि लेब्सेग माप तर्कसंगत संख्याओं का है है यह किसी भी आक्षेप को चुनकर किया जा सकता है (वास्तव में यह पर्याप्त है केवल अनुमान होने के लिए) और प्रत्येक के लिए दे रहा है

एक अन्य सरल उदाहरण के लिए, यदि का कोई सघन खुला उपसमुच्चय है, जिसका परिमित लेब्सग माप है, तो आवश्यक रूप से का एक बंद उपसमुच्चय है, जिसका माप अनंत लेबेस्ग्यू माप है, जो में कहीं भी सघन नहीं है (क्योंकि इसका टोपोलॉजिकल इंटीरियर खाली है)। परिमित लेब्सेग माप का ऐसा सघन खुला उपसमुच्चय आमतौर पर तब बनाया जाता है जब यह साबित किया जाता है कि परिमेय संख्या का लेब्सेग माप है। यह किसी भी आक्षेप को चुनकर किया जा सकता है (यह वास्तव में के लिए केवल एक अनुमान होने के लिए पर्याप्त है) और प्रत्येक के लिए दे रहा है

(यहाँ, मिन्कोव्स्की योग संकेतन अंतराल के विवरण को सरल बनाने के लिए उपयोग किया गया था)।

विवर्त उपसमुच्चय में सघन है क्योंकि यह इसके उपसमुच्चय के लिए सच है और इसका लेबेस्ग माप से अधिक नहीं है, खुले के अतिरिक्त बंद अंतरालों का मिलन लेने से F𝜎- उत्पन्न होता है

यह को संतुष्ट करता है क्योंकि का एक उपसमुच्चय है, वह उपसमुच्चय में कहीं भी सघन नहीं है, यह में कहीं भी सघन नहीं है, क्योंकि एक बेयर स्पेस है, समुच्चय
जहाँ सघन उपसमुच्चय है (जिसका अर्थ है कि इसके उपसमुच्चय की तरह संभवतः कहीं सघन नहीं हो सकता ) साथ लेब्सेग माप जो कि नॉनमेजर समुच्चय भी है ( अर्थात्, , में दूसरी श्रेणी का है), जो को का एक लघु उपसमुच्चय बनाता है जिसका में आंतरिक भाग भी खाली है; चूँकि , में कहीं भी सघन नहीं है यदि और केवल यदि में इसके closure दहोने का आंतरिक भाग खाली है।,

इस उदाहरण में उपसमुच्चय को R के किसी भी गणनीय सघन उपसमुच्चय द्वारा प्रतिस्थापित किया जा सकता है और इसके अतिरिक्त, समुच्चय को किसी भी पूर्णांक के लिए n द्वारा प्रतिस्थापित किया जा सकता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Bourbaki 1989, ch. IX, section 5.1.
  2. 2.0 2.1 2.2 Willard 2004, Problem 4G.
  3. Narici & Beckenstein 2011, section 11.5, pp. 387-389.
  4. Oxtoby, John C. (1980). माप और श्रेणी (2nd ed.). New York: Springer-Verlag. pp. 1–2. ISBN 0-387-90508-1. A set is nowhere dense if it is dense in no interval; although note that Oxtoby later gives the interior-of-closure definition on page 40.
  5. Natanson, Israel P. (1955). वास्तविक चर के कार्यों का सिद्धांत [Theory of functions of a real variable] (in English). Vol. I (Chapters 1-9). Translated by Boron, Leo F. New York: Frederick Ungar. p. 88. hdl:2027/mdp.49015000681685. LCCN 54-7420.
  6. Steen, Lynn Arthur; Seebach Jr., J. Arthur (1995). टोपोलॉजी में प्रति उदाहरण (Dover republication of Springer-Verlag 1978 ed.). New York: Dover. p. 7. ISBN 978-0-486-68735-3. A subset of is said to be nowhere dense in if no nonempty open set of is contained in
  7. 7.0 7.1 Gamelin, Theodore W. (1999). टोपोलॉजी का परिचय (2nd ed.). Mineola: Dover. pp. 36–37. ISBN 0-486-40680-6 – via ProQuest ebook Central.
  8. Rudin 1991, p. 41.
  9. Fremlin 2002, 3A3F(a).
  10. Narici & Beckenstein 2011, Theorem 11.5.4.
  11. Haworth & McCoy 1977, Proposition 1.3.
  12. Fremlin 2002, 3A3F(c).
  13. 13.0 13.1 Narici & Beckenstein 2011, Example 11.5.3(e).
  14. Narici & Beckenstein 2011, Example 11.5.3(a).
  15. Narici & Beckenstein 2011, Example 11.5.3(f).
  16. "Some nowhere dense sets with positive measure and a strictly monotonic continuous function with a dense set of points with zero derivative".
  17. Folland, G. B. (1984). Real analysis: modern techniques and their applications. New York: John Wiley & Sons. p. 41. hdl:2027/mdp.49015000929258. ISBN 0-471-80958-6.


ग्रन्थसूची


बाहरी संबंध