नियतात्मक प्रणाली: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|System in which no randomness is involved in determining its future states}} {{Probability fundamentals}} गणित, कंप्यूटर वि...")
 
No edit summary
Line 1: Line 1:
{{Short description|System in which no randomness is involved in determining its future states}}
{{Short description|System in which no randomness is involved in determining its future states}}
{{Probability fundamentals}}
{{Probability fundamentals}}
गणित, [[कंप्यूटर विज्ञान]] और भौतिकी में, नियतात्मक प्रणाली एक प्रणाली है जिसमें प्रणाली के भविष्य के राज्यों के विकास में कोई यादृच्छिकता शामिल नहीं है।<ref>[http://www.daviddarling.info/encyclopedia/D/deterministic_system.html deterministic system] - definition at ''The Internet Encyclopedia of Science''</ref> एक निर्धारक गणितीय मॉडल इस प्रकार हमेशा एक ही प्रारंभिक स्थिति या प्रारंभिक अवस्था से एक ही आउटपुट का उत्पादन करेगा।<ref>[http://www.scholarpedia.org/article/Dynamical_systems Dynamical systems] at [[Scholarpedia]]</ref>
गणित, [[कंप्यूटर विज्ञान]] और भौतिकी में, नियतात्मक प्रणाली ऐसी प्रणाली है, जिसमें प्रणाली के भविष्य के राज्यों के विकास में कोई यादृच्छिकता सम्मिलित नहीं है।<ref>[http://www.daviddarling.info/encyclopedia/D/deterministic_system.html deterministic system] - definition at ''The Internet Encyclopedia of Science''</ref> इस प्रकार नियतात्मक मॉडल किसी दी गई प्रारंभिक स्थिति या आरंभिक स्थिति से सदैव समान आउटपुट उत्पन्न करेगा।<ref>[http://www.scholarpedia.org/article/Dynamical_systems Dynamical systems] at [[Scholarpedia]]</ref>




Line 19: Line 19:
संगणना का एक नियतात्मक मॉडल, उदाहरण के लिए एक [[नियतात्मक ट्यूरिंग मशीन]], संगणना का एक मॉडल है जैसे कि मशीन की क्रमिक अवस्थाएँ और किए जाने वाले संचालन पूरी तरह से पूर्ववर्ती अवस्था द्वारा निर्धारित किए जाते हैं।
संगणना का एक नियतात्मक मॉडल, उदाहरण के लिए एक [[नियतात्मक ट्यूरिंग मशीन]], संगणना का एक मॉडल है जैसे कि मशीन की क्रमिक अवस्थाएँ और किए जाने वाले संचालन पूरी तरह से पूर्ववर्ती अवस्था द्वारा निर्धारित किए जाते हैं।


नियतात्मक एल्गोरिथम एक एल्गोरिथम है, जो एक विशेष इनपुट दिए जाने पर, हमेशा एक ही आउटपुट का उत्पादन करेगा, जिसमें अंतर्निहित मशीन हमेशा राज्यों के समान अनुक्रम से गुजरती है। ऐसे गैर-नियतात्मक एल्गोरिदम हो सकते हैं जो नियतात्मक मशीन पर चलते हैं, उदाहरण के लिए, एक एल्गोरिथ्म जो यादृच्छिक विकल्पों पर निर्भर करता है। आम तौर पर, इस तरह के यादृच्छिक विकल्पों के लिए, एक [[छद्म यादृच्छिक संख्या जनरेटर]] का उपयोग किया जाता है, लेकिन कोई बाहरी भौतिक प्रक्रिया का भी उपयोग कर सकता है, जैसे कि कंप्यूटर घड़ी द्वारा दिए गए समय के अंतिम अंक।
नियतात्मक एल्गोरिथम एक एल्गोरिथम है, जो एक विशेष इनपुट दिए जाने पर, सदैव एक ही आउटपुट का उत्पादन करेगा, जिसमें अंतर्निहित मशीन सदैव राज्यों के समान अनुक्रम से गुजरती है। ऐसे गैर-नियतात्मक एल्गोरिदम हो सकते हैं जो नियतात्मक मशीन पर चलते हैं, उदाहरण के लिए, एक एल्गोरिथ्म जो यादृच्छिक विकल्पों पर निर्भर करता है। आम तौर पर, इस तरह के यादृच्छिक विकल्पों के लिए, एक [[छद्म यादृच्छिक संख्या जनरेटर]] का उपयोग किया जाता है, लेकिन कोई बाहरी भौतिक प्रक्रिया का भी उपयोग कर सकता है, जैसे कि कंप्यूटर घड़ी द्वारा दिए गए समय के अंतिम अंक।


एक छद्म यादृच्छिक संख्या जनरेटर एक [[नियतात्मक एल्गोरिथ्म]] है, जिसे संख्याओं के अनुक्रमों का उत्पादन करने के लिए डिज़ाइन किया गया है जो यादृच्छिक अनुक्रमों के रूप में व्यवहार करते हैं। एक [[हार्डवेयर यादृच्छिक संख्या जनरेटर]], हालांकि, गैर-नियतात्मक हो सकता है।
एक छद्म यादृच्छिक संख्या जनरेटर एक [[नियतात्मक एल्गोरिथ्म]] है, जिसे संख्याओं के अनुक्रमों का उत्पादन करने के लिए डिज़ाइन किया गया है जो यादृच्छिक अनुक्रमों के रूप में व्यवहार करते हैं। एक [[हार्डवेयर यादृच्छिक संख्या जनरेटर]], हालांकि, गैर-नियतात्मक हो सकता है।

Revision as of 17:28, 10 July 2023

गणित, कंप्यूटर विज्ञान और भौतिकी में, नियतात्मक प्रणाली ऐसी प्रणाली है, जिसमें प्रणाली के भविष्य के राज्यों के विकास में कोई यादृच्छिकता सम्मिलित नहीं है।[1] इस प्रकार नियतात्मक मॉडल किसी दी गई प्रारंभिक स्थिति या आरंभिक स्थिति से सदैव समान आउटपुट उत्पन्न करेगा।[2]


भौतिकी में

parabolic projectile motion showing velocity vector
एक तोप से प्रक्षेपित एक प्रक्षेप्य का प्रक्षेपवक्र एक साधारण अंतर समीकरण द्वारा प्रतिरूपित किया जाता है जो न्यूटन के दूसरे नियम से प्राप्त होता है।

विभेदक समीकरणों द्वारा वर्णित भौतिक नियम नियतात्मक प्रणालियों का प्रतिनिधित्व करते हैं, भले ही एक निश्चित समय पर प्रणाली की स्थिति स्पष्ट रूप से वर्णन करना मुश्किल हो।

क्वांटम यांत्रिकी में, श्रोडिंगर समीकरण, जो एक प्रणाली के तरंग समारोह के निरंतर समय के विकास का वर्णन करता है, नियतात्मक है। हालाँकि, सिस्टम के तरंग क्रिया और सिस्टम के अवलोकन योग्य गुणों के बीच संबंध गैर-नियतात्मक प्रतीत होता है।

गणित में

अराजकता सिद्धांत में अध्ययन की गई प्रणालियाँ नियतात्मक हैं। यदि प्रारंभिक अवस्था ठीक-ठीक ज्ञात होती, तो ऐसी प्रणाली की भविष्य की स्थिति का सैद्धांतिक रूप से अनुमान लगाया जा सकता था। हालांकि, व्यवहार में, भविष्य की स्थिति के बारे में ज्ञान उस सटीकता से सीमित होता है जिसके साथ प्रारंभिक स्थिति को मापा जा सकता है, और अराजक प्रणालियों को प्रारंभिक स्थितियों पर एक मजबूत निर्भरता की विशेषता होती है। प्रारंभिक स्थितियों के प्रति इस संवेदनशीलता को लायपुनोव के घातांकों से मापा जा सकता है।

मार्कोव श्रृंखला और अन्य यादृच्छिक चाल नियतात्मक सिस्टम नहीं हैं, क्योंकि उनका विकास रैंडम विकल्पों पर निर्भर करता है।

कंप्यूटर विज्ञान में

संगणना का एक नियतात्मक मॉडल, उदाहरण के लिए एक नियतात्मक ट्यूरिंग मशीन, संगणना का एक मॉडल है जैसे कि मशीन की क्रमिक अवस्थाएँ और किए जाने वाले संचालन पूरी तरह से पूर्ववर्ती अवस्था द्वारा निर्धारित किए जाते हैं।

नियतात्मक एल्गोरिथम एक एल्गोरिथम है, जो एक विशेष इनपुट दिए जाने पर, सदैव एक ही आउटपुट का उत्पादन करेगा, जिसमें अंतर्निहित मशीन सदैव राज्यों के समान अनुक्रम से गुजरती है। ऐसे गैर-नियतात्मक एल्गोरिदम हो सकते हैं जो नियतात्मक मशीन पर चलते हैं, उदाहरण के लिए, एक एल्गोरिथ्म जो यादृच्छिक विकल्पों पर निर्भर करता है। आम तौर पर, इस तरह के यादृच्छिक विकल्पों के लिए, एक छद्म यादृच्छिक संख्या जनरेटर का उपयोग किया जाता है, लेकिन कोई बाहरी भौतिक प्रक्रिया का भी उपयोग कर सकता है, जैसे कि कंप्यूटर घड़ी द्वारा दिए गए समय के अंतिम अंक।

एक छद्म यादृच्छिक संख्या जनरेटर एक नियतात्मक एल्गोरिथ्म है, जिसे संख्याओं के अनुक्रमों का उत्पादन करने के लिए डिज़ाइन किया गया है जो यादृच्छिक अनुक्रमों के रूप में व्यवहार करते हैं। एक हार्डवेयर यादृच्छिक संख्या जनरेटर, हालांकि, गैर-नियतात्मक हो सकता है।

अन्य

अर्थशास्त्र में रैमसे-कैस-कूपमन्स मॉडल नियतात्मक है। स्टोकेस्टिक समतुल्य को वास्तविक व्यापार-चक्र सिद्धांत के रूप में जाना जाता है।

यह भी देखें

संदर्भ

  1. deterministic system - definition at The Internet Encyclopedia of Science
  2. Dynamical systems at Scholarpedia