नियतात्मक प्रणाली: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|System in which no randomness is involved in determining its future states}}
{{Short description|System in which no randomness is involved in determining its future states}}
{{Probability fundamentals}}
{{Probability fundamentals}}
गणित, [[कंप्यूटर विज्ञान]] और भौतिकी में, नियतात्मक प्रणाली ऐसी प्रणाली है, जिसमें प्रणाली के भविष्य के राज्यों के विकास में कोई यादृच्छिकता सम्मिलित नहीं है।<ref>[http://www.daviddarling.info/encyclopedia/D/deterministic_system.html deterministic system] - definition at ''The Internet Encyclopedia of Science''</ref> इस प्रकार नियतात्मक मॉडल किसी दी गई प्रारंभिक स्थिति या आरंभिक स्थिति से सदैव समान आउटपुट उत्पन्न करेगा।<ref>[http://www.scholarpedia.org/article/Dynamical_systems Dynamical systems] at [[Scholarpedia]]</ref>
गणित, [[कंप्यूटर विज्ञान]] और भौतिकी में, नियतात्मक प्रणाली ऐसी प्रणाली है, जिसमें प्रणाली की स्थितियों के विकास में कोई यादृच्छिकता सम्मिलित नहीं होती है।<ref>[http://www.daviddarling.info/encyclopedia/D/deterministic_system.html deterministic system] - definition at ''The Internet Encyclopedia of Science''</ref> इस प्रकार नियतात्मक मॉडल किसी दी गई प्रारंभिक स्थिति या प्रारंभिक स्थिति से सदैव समान आउटपुट उत्पन्न करेगा।<ref>[http://www.scholarpedia.org/article/Dynamical_systems Dynamical systems] at [[Scholarpedia]]</ref>
 
 
== भौतिकी में ==
== भौतिकी में ==


[[Image:Parabolic trajectory.svg|right|thumb|250px|alt=parabolic projectile motion showing velocity vector|[[तोप]] से प्रक्षेपित ऐसा [[प्रक्षेप्य]] का [[प्रक्षेपवक्र]] [[साधारण अंतर समीकरण]] द्वारा प्रतिरूपित किया जाता है जो न्यूटन के दूसरे नियम से प्राप्त होता है।]][[विभेदक समीकरण|विभेदक समीकरणों]] द्वारा वर्णित भौतिक नियम नियतात्मक प्रणालियों का प्रतिनिधित्व करते हैं, संभवता निश्चित समय पर प्रणाली की स्थिति स्पष्ट रूप से वर्णन करना कठिन हो सकता है।
[[Image:Parabolic trajectory.svg|right|thumb|250px|alt=parabolic projectile motion showing velocity vector|[[तोप]] से प्रक्षेपित ऐसा [[प्रक्षेप्य]] का [[प्रक्षेपवक्र]] [[साधारण अंतर समीकरण]] द्वारा प्रतिरूपित किया जाता है जो न्यूटन के दूसरे नियम से प्राप्त होता है।]][[विभेदक समीकरण|विभेदक समीकरणों]] द्वारा वर्णित भौतिक नियम नियतात्मक प्रणालियों का प्रतिनिधित्व करते हैं, संभवता ही किसी निश्चित समय पर प्रणाली की स्थिति स्पष्ट रूप से वर्णन करना कठिन हो सकता है।


[[क्वांटम यांत्रिकी]] में, श्रोडिंगर समीकरण, जो प्रणाली के तरंग फ़ंक्शन के निरंतर समय के विकास का वर्णन करता है, नियतात्मक होता है। चूंकि, प्रणाली की [[तरंग क्रिया]] और प्रणाली के अवलोकन योग्य गुणों के मध्य संबंध गैर-नियतात्मक प्रतीत होता है।
[[क्वांटम यांत्रिकी]] में, श्रोडिंगर समीकरण, जो प्रणाली के तरंग फ़ंक्शन के निरंतर समय के विकास का वर्णन करता है, नियतात्मक होता है। चूंकि, प्रणाली की [[तरंग क्रिया]] और प्रणाली के अवलोकन योग्य गुणों के मध्य संबंध गैर-नियतात्मक प्रतीत होता है।

Revision as of 20:12, 10 July 2023

गणित, कंप्यूटर विज्ञान और भौतिकी में, नियतात्मक प्रणाली ऐसी प्रणाली है, जिसमें प्रणाली की स्थितियों के विकास में कोई यादृच्छिकता सम्मिलित नहीं होती है।[1] इस प्रकार नियतात्मक मॉडल किसी दी गई प्रारंभिक स्थिति या प्रारंभिक स्थिति से सदैव समान आउटपुट उत्पन्न करेगा।[2]

भौतिकी में

parabolic projectile motion showing velocity vector
तोप से प्रक्षेपित ऐसा प्रक्षेप्य का प्रक्षेपवक्र साधारण अंतर समीकरण द्वारा प्रतिरूपित किया जाता है जो न्यूटन के दूसरे नियम से प्राप्त होता है।

विभेदक समीकरणों द्वारा वर्णित भौतिक नियम नियतात्मक प्रणालियों का प्रतिनिधित्व करते हैं, संभवता ही किसी निश्चित समय पर प्रणाली की स्थिति स्पष्ट रूप से वर्णन करना कठिन हो सकता है।

क्वांटम यांत्रिकी में, श्रोडिंगर समीकरण, जो प्रणाली के तरंग फ़ंक्शन के निरंतर समय के विकास का वर्णन करता है, नियतात्मक होता है। चूंकि, प्रणाली की तरंग क्रिया और प्रणाली के अवलोकन योग्य गुणों के मध्य संबंध गैर-नियतात्मक प्रतीत होता है।

गणित में

अराजकता सिद्धांत में अध्ययन की गई प्रणालियाँ नियतात्मक होती हैं। यदि प्रारंभिक अवस्था उचित रूप से ज्ञात होती, तो ऐसी प्रणाली की भविष्य की स्थिति का सैद्धांतिक रूप से अनुमान लगाया जा सकता था। चूंकि, व्यवहार में, भविष्य की स्थिति के विषय में ज्ञान उस स्थिरता से सीमित होता है जिसके साथ प्रारंभिक स्थिति को मापा जा सकता है, और अराजक प्रणालियों को प्रारंभिक स्थितियों पर दृढ़ निर्भरता की विशेषता होती है। प्रारंभिक स्थितियों के प्रति इस संवेदनशीलता को ल्यपुनोव प्रतिपादकों से मापा जा सकता है।

मार्कोव श्रृंखला और अन्य यादृच्छिक चाल नियतात्मक प्रणाली नहीं हैं, क्योंकि उनका विकास यादृच्छिक विकल्पों पर निर्भर करता है।

कंप्यूटर विज्ञान में

संगणना का नियतात्मक मॉडल, उदाहरण के लिए नियतात्मक ट्यूरिंग मशीन, संगणना का मॉडल है, जैसे कि मशीन की क्रमिक अवस्थाएँ और किए जाने वाले संचालन पूर्ण रूप से पूर्ववर्ती स्थिति द्वारा निर्धारित किए जाते हैं।

नियतात्मक एल्गोरिथम ऐसा एल्गोरिथम है, जो विशेष इनपुट दिए जाने पर, सदैव आउटपुट उत्पन्न करेगा, जिसमें अंतर्निहित मशीन सदैव राज्यों के समान अनुक्रम से निर्वाह होती है। ऐसे गैर-नियतात्मक एल्गोरिदम हो सकते हैं जो नियतात्मक मशीन पर चलते हैं, उदाहरण के लिए, एल्गोरिदम जो यादृच्छिक विकल्पों पर निर्भर करता है। सामान्यतः, ऐसे यादृच्छिक विकल्पों के लिए, कोई, छद्म यादृच्छिक संख्या जनरेटर का उपयोग किया जाता है, किन्तु कुछ बाहरी भौतिक प्रक्रिया का भी उपयोग कर सकता है, जैसे कि कंप्यूटर घड़ी द्वारा दिए गए समय के अंतिम अंक होते है।

छद्म यादृच्छिक संख्या जनरेटर ऐसा नियतात्मक एल्गोरिथ्म है, जिसे संख्याओं के अनुक्रमों का उत्पादन करने के लिए डिज़ाइन किया गया है जो यादृच्छिक अनुक्रमों के रूप में व्यवहार करते हैं। चूंकि, हार्डवेयर यादृच्छिक संख्या जनरेटर गैर-नियतात्मक हो सकता है।

अन्य

अर्थशास्त्र में रैमसे-कैस-कूपमन्स मॉडल नियतात्मक है। स्टोकेस्टिक समतुल्य को वास्तविक व्यापार-चक्र सिद्धांत के रूप में जाना जाता है।

यह भी देखें

संदर्भ

  1. deterministic system - definition at The Internet Encyclopedia of Science
  2. Dynamical systems at Scholarpedia