वलयी समष्टि: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 09:01, 15 July 2023

गणित में, एक रिंग्ड स्पेस (कम्यूटेटिव) वलय का एक वर्ग है, जो एक टोपोलॉजिकल स्पेस के विवर्त उपसमुच्चय द्वारा वलय होमोमोर्फिज्म के साथ पैरामीट्रिज्ड होता है जो प्रतिबंधों की भूमिका निभाता है। संक्षेप में यह एक टोपोलॉजिकल स्थान है जो वलय के एक समूह से सुसज्जित है जिसे संरचना शीफ कहा जाता है। यह विवर्त उपसमुच्चय पर निरंतर (अदिश-मूल्यवान) कार्यों के वलय की अवधारणा का एक अमूर्तन है।

चक्राकार स्थानों में, विशेष रूप से महत्वपूर्ण और प्रमुख स्थानीय रूप से चक्राकार स्थान है: एक चक्राकार स्थान जिसमें एक बिंदु पर डंठल और एक बिंदु पर कार्यों के रोगाणुओं की वलय के बीच सादृश्य मान्य है।

चक्राकार रिक्त स्थान विश्लेषण के साथ-साथ जटिल बीजगणितीय ज्यामिति और बीजगणितीय ज्यामिति के योजना सिद्धांत में भी दिखाई देते हैं।

ध्यान दें: वलय वाले स्थान की परिभाषा में अधिकांश व्याख्याएं वलय को क्रमविनिमेय वलय तक ही सीमित रखती हैं, जिनमें हार्टशोर्न और विकिपीडिया भी सम्मिलित हैं। दूसरी ओर, एलिमेंट्स डी जियोमेट्री अल्जेब्रिक, क्रमविनिमेयता धारणा को प्रयुक्त नहीं करता है, चूँकि पुस्तक अधिकत्तर क्रमविनिमेय स्थिति पर विचार करती है।[1]

परिभाषाएँ

एक चक्राकार स्थान एक टोपोलॉजिकल स्थान है, साथ में पर वलय का एक समूह है। शीफ को का स्ट्रक्चर शीफ कहा जाता है।

स्थानीय रूप से चक्राकार स्थान एक चक्राकार स्थान है इस प्रकार कि के सभी डंठल स्थानीय वलय हैं (अर्थात उनके पास अद्वितीय अधिकतम आदर्श हैं)। ध्यान दें कि यह आवश्यक नहीं है कि प्रत्येक विवर्त सेट के लिए एक स्थानीय वलय हो; वास्तव में, ऐसा लगभग कभी नहीं होता है।

उदाहरण

एक मनमाना टोपोलॉजिकल स्पेस कोलेकर स्थानीय रूप से वलय वाला स्पेस माना जा सविवर्त के विवर्त उपसमुच्चय पर वास्तविक-मूल्यवान (या जटिल-मूल्यवान) निरंतर कार्यो का समूह होना। एक बिं पर डंठल पर निरंतर कार्य करने वाले सभी रोगाणुओं के समुच्चय के रूप में माना जा सकता है; यह अद्वितीय अधिकतम आदर्श वाला एक स्थानीय वलय है जिसमें वे रोगाणु सम्मिलित हैं जिनका पर मान 0 है।

यदि कुछ अतिरिक्त संरचना के साथ एक मैनिफोल्ड विभेदक कार्य, या होलोमोर्फिक फलन या जटिल-विश्लेषणात्मक फलन का शीफ ​​भी ले सकते हैं। ये दोनों स्थानीय रूप से चक्रित स्थानों को जन्म देते हैं।

यदि एक बीजगणितीय विविधता है जो ज़ारिस्की टोपोलॉजी को ले जाती है, हम ज़ारिस्की-ओपन सेट पर परिभाषित तर्कसंगत मैपिंग की वलय के रूप में लेकर स्थानीय रूप से वलय किए गए स्थान को परिभाषित कर सकते हैं। के अंदर विस्फोट न हो (अनंत हो जाए)। इस उदाहरण का महत्वपूर्ण सामान्यीकरण किसी भी क्रमविनिमेय वलय के स्पेक्ट्रम का है; ये स्पेक्ट्रा स्थानीय रूप से चक्रित स्थान भी हैं। योजनाएं स्थानीय रूप से वलय किए गए स्थान हैं जो क्रमविनिमेय वलयो के स्पेक्ट्रा को "एक साथ चिपकाकर" प्राप्त की जाती हैं।

आकारिकी

से तक एक रूपवाद एक जोड़ी है, जहां अंतर्निहित टोपोलॉजिकल रिक्त स्थान के बीच एक सतत मानचित्र है, और के संरचना शीफ से प्रत्यक्ष तक एक रूपवाद है X के संरचना शीफ की छवि। दूसरे शब्दों में, से तक एक रूपवाद निम्नलिखित डेटा द्वारा दिया गया है:

  • एक सतत कार्य (टोपोलॉजी)
  • वलय समरूपताओं का एक वर्ग प्रत्येक विवर्त सेट के लिए का जो प्रतिबंध मानचित्रों के साथ आवागमन करते हैं। अर्थात यदि के दो विवर्त उपसमुच्चय हैं , तो निम्नलिखित आरेख को क्रमविनिमेय आरेख होना चाहिए (ऊर्ध्वाधर मानचित्र प्रतिबंध समरूपताएं हैं):
LocallyRingedSpace-01.png

स्थानीय रूप से वलय किए गए स्थानों के बीच आकारिकी के लिए एक अतिरिक्त आवश्यकता है:

  • के डंठलों और X के डंठलों के बीच द्वारा प्रेरित वलय समरूपताएं स्थानीय समरूपताएं होनी चाहिए, अथार्त प्रत्येक के लिए पर स्थानीय वलय (डंठल) का अधिकतम आदर्श पर स्थानीय वलय के अधिकतम आदर्श में मैप किया जाता है।

एक नया रूपवाद बनाने के लिए दो रूपवादों की रचना की जा सकती है, और हम चक्राकार स्थानों की श्रेणी (गणित) और स्थानीय रूप से चक्राकार स्थानों की श्रेणी प्राप्त करते हैं। इन श्रेणियों में समरूपता को सदैव की तरह परिभाषित किया गया है।

स्पर्शरेखा रिक्त स्थान

स्थानीय रूप से वलय किए गए स्थानों में स्पर्शरेखा स्थान की सार्थक परिभाषा की अनुमति देने के लिए पर्याप्त संरचना होती है। होने देना संरचना शीफ ​​के साथ स्थानीय रूप से रिंगित स्थान बनें हम स्पर्शरेखा स्थान को परिभाषित करना चाहते हैं बिंदु पर. स्थानीय वलय (डंठल) लें बिंदु पर , अधिकतम आदर्श के साथ . तब एक क्षेत्र (गणित) है और उस क्षेत्र (कोटैंजेंट स्थान) पर एक सदिश स्थल है। स्पर्शरेखा स्थान इस सदिश समष्टि के दोहरे समष्टि के रूप में परिभाषित किया गया है।

विचार निम्नलिखित है: पर एक स्पर्शरेखा वेक्टर आपको बताएगा कि पर "फ़ंक्शंस" को कैसे "अंतरित" किया जाए, अथार्त के तत्व में अब यह जानना पर्याप्त है कि उन फलन को कैसे अलग किया जाए जिनका मान पर शून्य है, क्योंकि अन्य सभी फलन इनसे केवल एक स्थिरांक द्वारा भिन्न होते हैं, और हम जानते हैं कि स्थिरांकों को कैसे अलग किया जाए। इसलिए हमें केवल पर विचार करने की आवश्यकता है।.इसके अतिरिक्त, यदि दो फ़ंक्शन पर मान शून्य के साथ दिए गए हैं, तो उत्पाद नियम के अनुसार, उनके उत्पाद का पर व्युत्पन्न 0 है। इसलिए हमें केवल यह जानने की जरूरत है कि के तत्वों को "नंबर" कैसे निर्दिष्ट किया जाए, और दोहरा स्थान यही करता है।

-मॉड्यूल

स्थानीय रूप से वलय किए गए स्थान को देखते हुए, पर मॉड्यूल के कुछ संग्रह अनुप्रयोगों, -मॉड्यूल में होते हैं। उन्हें परिभाषित करने के लिए, पर एबेलियन समूहों के एक शीफ F पर विचार करें। यदि F(U) में प्रत्येक खुले सेट के लिए वलय पर एक मॉड्यूल है, और प्रतिबंध मानचित्र मॉड्यूल संरचना के साथ संगत हैं, तो हम कॉल करते हैं एक -मॉड्यूल इस स्थिति में, x पर का डंठल प्रत्येक के लिए स्थानीय वलय (डंठल) पर एक मॉड्यूल होगा।

ऐसे दो के बीच एक रूपवाद-मॉड्यूल शीव्स या मॉर्फिज्म का एक मॉर्फिज्म है जो दिए गए मॉड्यूल संरचनाओं के साथ संगत है। की श्रेणी -एक निश्चित स्थानीय वलय वाले स्थान पर मॉड्यूल एक एबेलियन श्रेणी है।

मॉड्यूल की श्रेणी की एक महत्वपूर्ण उपश्रेणी पर अर्ध-सुसंगत शीव्स की श्रेणी है। -मॉड्यूल के एक समूह को अर्ध-सुसंगत कहा जाता है यदि यह, स्थानीय रूप से, मुक्त -मॉड्यूल के बीच के मानचित्र के कोकर्नेल के लिए आइसोमोर्फिक है। एक सुसंगत शीफ F एक अर्ध-सुसंगत शीफ है, जो, स्थानीय रूप से, परिमित प्रकार का है और के प्रत्येक खुले उपसमुच्चय के लिए एक मुक्त से किसी भी रूपवाद का कर्नेल है मूल-परिमित रैंक के मॉड्यूलयह भी परिमित प्रकार का है।

उद्धरण

  1. EGA, Ch 0, 4.1.1.


संदर्भ

  • Section 0.4 of Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS. 4. doi:10.1007/bf02684778. MR 0217083.
  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157


बाहरी संबंध