होशचाइल्ड होमोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 49: Line 49:


:<math> n_+ = \{0,1,\ldots,n\},</math>
:<math> n_+ = \{0,1,\ldots,n\},</math>
'''जहां 0 आधारबिंदु है, और [[रूपवाद (श्रेणी सिद्धांत)]] सेट मानचित्रों को संरक्षित करने वाला आधारबिंदु है।''' मान लीजिए A एक क्रमविनिमेय k-बीजगणित है और M एक सममित A-बिमॉड्यूल है{{Elucidate|date=March 2012}}. लोडे फ़नकार <math>L(A,M)</math> में वस्तुओं पर दिया गया है <math>\operatorname{Fin}_*</math> द्वारा
जहां 0 आधारबिंदु है, और आकारिकी सेट मानचित्रों को संरक्षित करने वाला आधारबिंदु है। मान लीजिए A एक क्रमविनिमेय k-बीजगणित है और M एक सममित A-बिमॉड्यूल है लॉडे फ़ैक्टर <math>L(A,M)</math> को <math>\operatorname{Fin}_*</math> में ऑब्जेक्ट पर दिया गया है


:<math> n_+ \mapsto M \otimes A^{\otimes n}.</math>
:<math> n_+ \mapsto M \otimes A^{\otimes n}.</math>
Line 55: Line 55:


:<math>f:m_+ \to n_+</math>
:<math>f:m_+ \to n_+</math>
रूपवाद को भेजा जाता है <math>f_*</math> द्वारा दिए गए
द्वारा दिए गए रूपवाद <math>f_*</math>पर भेजा जाता है


:<math> f_*(a_0 \otimes \cdots \otimes a_m) = b_0 \otimes \cdots \otimes b_n </math>
:<math> f_*(a_0 \otimes \cdots \otimes a_m) = b_0 \otimes \cdots \otimes b_n </math>
कहाँ
जहाँ


:<math>\forall j \in \{0, \ldots, n \}: \qquad b_j =
:<math>\forall j \in \{0, \ldots, n \}: \qquad b_j =
Line 68: Line 68:


===बीजगणित की होशचाइल्ड समरूपता का एक और विवरण===
===बीजगणित की होशचाइल्ड समरूपता का एक और विवरण===
एक सममित -बिमॉड्यूल एम में गुणांक के साथ एक क्रमविनिमेय बीजगणित की होशचाइल्ड समरूपता रचना से जुड़ी समरूपता है
एक सममित ''A''-बिमॉड्यूल एम में गुणांक के साथ एक क्रमविनिमेय बीजगणित ''A'' की होशचाइल्ड समरूपता रचना से जुड़ी समरूपता है


:<math>\Delta^o \overset{S^1}{\longrightarrow} \operatorname{Fin}_* \overset{\mathcal{L}(A,M)}{\longrightarrow} k\text{-mod},</math>
:<math>\Delta^o \overset{S^1}{\longrightarrow} \operatorname{Fin}_* \overset{\mathcal{L}(A,M)}{\longrightarrow} k\text{-mod},</math>
Line 74: Line 74:


== उदाहरण ==
== उदाहरण ==
होशचाइल्ड होमोलॉजी गणनाओं के उदाहरणों को होमोलॉजी समूहों और होमोलॉजी वलय की संरचना का वर्णन करने वाले काफी सामान्य प्रमेयों के साथ कई अलग-अलग मामलों में स्तरीकृत किया जा सकता है। <math>HH_*(A)</math> एक साहचर्य बीजगणित के लिए <math>A</math>. क्रमविनिमेय बीजगणित के स्थिति में, विशेषता 0 पर गणनाओं का वर्णन करने वाले कई प्रमेय हैं जो होमोलॉजी और कोहोमोलॉजी की गणना की सीधी समझ प्रदान करते हैं।
होशचाइल्ड होमोलॉजी गणनाओं के उदाहरणों को अधिक सामान्य प्रमेयों के साथ कई अलग-अलग स्थितियों में स्तरीकृत किया जा सकता है, जो एक सहयोगी बीजगणित ए के लिए होमोलॉजी समूहों और होमोलॉजी वलय <math>HH_*(A)</math> की संरचना का वर्णन करते हैं। क्रमविनिमेय बीजगणित के स्थिति के लिए, एक संख्या है विशेषता <math>A</math> से अधिक गणनाओं का वर्णन करने वाले प्रमेयों से होमोलॉजी और कोहोमोलॉजी की गणना की सीधी समझ प्राप्त होती है।


=== क्रमविनिमेय विशेषता 0 मामला ===
=== क्रमविनिमेय विशेषता 0 स्थिति ===
क्रमविनिमेय बीजगणित के स्थिति में <math>A/k</math> कहाँ <math>\mathbb{Q}\subseteq k</math>होशचाइल्ड होमोलॉजी में चिकने बीजगणित और अधिक सामान्य गैर-सपाट बीजगणित से संबंधित दो मुख्य प्रमेय हैं <math>A</math>; लेकिन, दूसरा पहले का प्रत्यक्ष सामान्यीकरण है। चिकने स्थिति में, अथार्त चिकने बीजगणित के लिए <math>A</math>, होशचाइल्ड-कोस्टेंट-रोसेनबर्ग प्रमेय<ref>{{cite arXiv|last=Ginzburg|first=Victor|date=2005-06-29|title=नॉनकम्यूटेटिव ज्योमेट्री पर व्याख्यान|eprint=math/0506603}}</ref><sup>पृष्ठ 43-44</sup> बताता है कि एक समरूपता है <math display="block">\Omega^n_{A/k} \cong HH_n(A/k)</math> हरएक के लिए <math>n \geq 0</math>. इस समरूपता को एंटी-सिमेट्रिज़ेशन मानचित्र का उपयोग करके स्पष्ट रूप से वर्णित किया जा सकता है। अथार्त  एक अंतर <math>n</math>-फॉर्म में नक्शा है<math display="block">a\,db_1\wedge \cdots \wedge db_n \mapsto
क्रमविनिमेय बीजगणित <math>A/k</math> जहां <math>\mathbb{Q}\subseteq k</math> के स्थिति में, होशचाइल्ड होमोलॉजी में चिकने बीजगणित और अधिक सामान्य गैर-सपाट बीजगणित <math>A</math> से संबंधित दो मुख्य प्रमेय हैं; किंतु  दूसरा पहले का प्रत्यक्ष सामान्यीकरण है। सहज स्थिति में, अथार्त एक सहज बीजगणित <math>A</math> के लिए, होशचाइल्ड-कोस्टेंट-रोसेनबर्ग प्रमेय<ref>{{cite arXiv|last=Ginzburg|first=Victor|date=2005-06-29|title=नॉनकम्यूटेटिव ज्योमेट्री पर व्याख्यान|eprint=math/0506603}}</ref><sup>पृष्ठ 43-44</sup> में कहा गया है कि एक समरूपता है <math display="block">\Omega^n_{A/k} \cong HH_n(A/k)</math> प्रत्येक <math>n \geq 0</math> के लिए। इस समरूपता को एंटी-सिमेट्रिज़ेशन मानचित्र का उपयोग करके स्पष्ट रूप से वर्णित किया जा सकता है। अर्थात् एक विभेदक <math>n</math>-रूप में मानचित्र होता है<math display="block">a\,db_1\wedge \cdots \wedge db_n \mapsto
\sum_{\sigma \in S_n}\operatorname{sign}(\sigma)
\sum_{\sigma \in S_n}\operatorname{sign}(\sigma)
     a\otimes b_{\sigma(1)}\otimes \cdots \otimes b_{\sigma(n)}.</math>
     a\otimes b_{\sigma(1)}\otimes \cdots \otimes b_{\sigma(n)}.</math>
यदि बीजगणित <math>A/k</math> चिकना या सपाट भी नहीं है, तो कोटैंजेंट कॉम्प्लेक्स का उपयोग करते हुए एक अनुरूप प्रमेय है। एक सरल समाधान के लिए <math>P_\bullet \to A</math>, हमलोग तैयार हैं <math>\mathbb{L}^i_{A/k} = \Omega^i_{P_\bullet/k}\otimes_{P_\bullet} A</math>. फिर, वहाँ एक अवरोहण मौजूद है <math>\mathbb{N}</math>-छानने का काम <math>F_\bullet</math> पर <math>HH_n(A/k)</math> जिनके श्रेणीबद्ध टुकड़े समरूपी हैं <math display="block">\frac{F_i}{F_{i+1}} \cong \mathbb{L}^i_{A/k}[+i].</math>
यदि बीजगणित <math>A/k</math> चिकना या सपाट भी नहीं है, तो कोटैंजेंट कॉम्प्लेक्स का उपयोग करते हुए एक अनुरूप प्रमेय है। एक सरल समाधान <math>P_\bullet \to A</math> के लिए, हम <math>\mathbb{L}^i_{A/k} = \Omega^i_{P_\bullet/k}\otimes_{P_\bullet} A</math> सेट करते हैं। फिर, <math>F_\bullet</math> पर एक अवरोही <math>\mathbb{N}</math> -निस्पंदन <math>HH_n(A/k)</math> उपस्थित है जिसके वर्गीकृत टुकड़े समरूपी हैं <math display="block">\frac{F_i}{F_{i+1}} \cong \mathbb{L}^i_{A/k}[+i].</math>
ध्यान दें कि यह प्रमेय न केवल सुचारु बीजगणित के लिए, बल्कि स्थानीय पूर्ण प्रतिच्छेदन बीजगणित के लिए भी होशचाइल्ड समरूपता की गणना करना सुलभ बनाता है। इस स्थिति में एक प्रेजेंटेशन दिया <math>A = R/I</math> के लिए <math>R = k[x_1,\dotsc,x_n]</math>, कोटैंजेंट कॉम्प्लेक्स दो-टर्म कॉम्प्लेक्स है <math>I/I^2 \to \Omega^1_{R/k}\otimes_k A</math>.
ध्यान दें कि यह प्रमेय न केवल सुचारु बीजगणित के लिए, किंतु स्थानीय पूर्ण प्रतिच्छेदन बीजगणित के लिए भी होशचाइल्ड समरूपता की गणना करना सुलभ बनाता है। इस स्थिति में, <math>A = R/I</math> के लिए एक प्रस्तुति <math>R = k[x_1,\dotsc,x_n]</math> दी गई है, कोटैंजेंट कॉम्प्लेक्स दो-टर्म कॉम्प्लेक्स <math>I/I^2 \to \Omega^1_{R/k}\otimes_k A</math> है


==== परिमेय पर बहुपद वलय ====
==== परिमेय पर बहुपद वलय ====
एक सरल उदाहरण बहुपद वलय की होशचाइल्ड समरूपता की गणना करना है <math>\mathbb{Q}</math> साथ <math>n</math>-जनरेटर। एचकेआर प्रमेय समरूपता देता है <math display="block">HH_*(\mathbb{Q}[x_1,\ldots, x_n]) = \mathbb{Q}[x_1,\ldots, x_n]\otimes \Lambda(dx_1,\dotsc, dx_n)</math> जहां बीजगणित <math>\bigwedge(dx_1,\ldots, dx_n)</math> मुक्त एंटीसिमेट्रिक बीजगणित खत्म हो गया है <math>\mathbb{Q}</math> में <math>n</math>-जनरेटर। इसकी उत्पाद संरचना वैक्टर के वेज उत्पाद द्वारा दी गई है <math display="block">\begin{align}
एक सरल उदाहरण <math>n</math>-जनरेटर के साथ <math>\mathbb{Q}</math> की एक बहुपद वलय की होशचाइल्ड होमोलॉजी की गणना करना है। एचकेआर प्रमेय समरूपता देता है <math display="block">HH_*(\mathbb{Q}[x_1,\ldots, x_n]) = \mathbb{Q}[x_1,\ldots, x_n]\otimes \Lambda(dx_1,\dotsc, dx_n)</math> जहां बीजगणित <math>\bigwedge(dx_1,\ldots, dx_n)</math> <math>n</math>-जनरेटर में <math>\mathbb{Q}</math> से अधिक मुक्त एंटीसिमेट्रिक बीजगणित है। इसकी उत्पाद संरचना वैक्टर के वेज उत्पाद द्वारा दी गई है <math display="block">\begin{align}
dx_i\cdot dx_j &= -dx_j\cdot dx_i \\
dx_i\cdot dx_j &= -dx_j\cdot dx_i \\
dx_i\cdot dx_i &= 0   
dx_i\cdot dx_i &= 0   
Line 90: Line 90:


=== क्रमविनिमेय विशेषता पी केस ===
=== क्रमविनिमेय विशेषता पी केस ===
विशिष्ट पी स्थिति में, होशचाइल्ड-कोस्टेंट-रोसेनबर्ग प्रमेय का एक उपयोगी प्रति-उदाहरण है जो होशचाइल्ड होमोलॉजी को परिभाषित करने के लिए सरल बीजगणित से परे एक सिद्धांत की आवश्यकता को स्पष्ट करता है। इसपर विचार करें <math>\mathbb{Z}</math>-बीजगणित <math>\mathbb{F}_p</math>. हम एक संकल्प की गणना कर सकते हैं <math>\mathbb{F}_p</math> मुक्त अंतर श्रेणीबद्ध बीजगणित के रूप में<math display="block">\mathbb{Z}\xrightarrow{\cdot p} \mathbb{Z}</math>व्युत्पन्न प्रतिच्छेदन दे रहा है <math>\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p \cong \mathbb{F}_p[\varepsilon]/(\varepsilon^2)</math> कहाँ <math>\text{deg}(\varepsilon) = 1</math> और अंतर शून्य मानचित्र है। ऐसा इसलिए है क्योंकि हम उपरोक्त कॉम्प्लेक्स को केवल टेंसर करते हैं <math>\mathbb{F}_p</math>, डिग्री में जनरेटर के साथ एक औपचारिक परिसर दे रहा है <math>1</math> कौन सा वर्ग है <math>0</math>. फिर, होशचाइल्ड कॉम्प्लेक्स द्वारा दिया गया है<math display="block">\mathbb{F}_p\otimes^\mathbb{L}_{\mathbb{F}_p\otimes^\mathbb{L}_\mathbb{Z} \mathbb{F}_p}\mathbb{F}_p</math>इसकी गणना करने के लिए, हमें समाधान करना होगा <math>\mathbb{F}_p</math> एक के रूप में <math>\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math>-बीजगणित. बीजगणित संरचना का निरीक्षण करें
विशेषता p  स्थिति में, होशचाइल्ड-कोस्टेंट-रोसेनबर्ग प्रमेय का एक उपयोगी प्रति-उदाहरण है जो होशचाइल्ड होमोलॉजी को परिभाषित करने के लिए सरल बीजगणित से परे एक सिद्धांत की आवश्यकता को स्पष्ट करता है। <math>\mathbb{Z}</math> -बीजगणित <math>\mathbb{F}_p</math> पर विचार करें। हम मुक्त अंतर श्रेणीबद्ध बीजगणित के रूप में <math>\mathbb{F}_p</math> के रिज़ॉल्यूशन की गणना कर सकते हैं<math display="block">\mathbb{Z}\xrightarrow{\cdot p} \mathbb{Z}</math>व्युत्पन्न प्रतिच्छेदन <math>\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p \cong \mathbb{F}_p[\varepsilon]/(\varepsilon^2)</math> दे रहा है जहां <math>\text{deg}(\varepsilon) = 1</math> और अंतर शून्य मानचित्र है। इसका कारण यह है कि हम ऊपर दिए गए कॉम्प्लेक्स को <math>\mathbb{F}_p</math> द्वारा टेंसर करते हैं, जिससे डिग्री <math>1</math> में जनरेटर के साथ एक औपचारिक कॉम्प्लेक्स मिलता है, जिसका वर्ग होता है <math>0</math> फिर, होशचाइल्ड कॉम्प्लेक्स द्वारा दिया गया है<math display="block">\mathbb{F}_p\otimes^\mathbb{L}_{\mathbb{F}_p\otimes^\mathbb{L}_\mathbb{Z} \mathbb{F}_p}\mathbb{F}_p</math>इसकी गणना करने के लिए, हमें समाधान करना होगा <math>\mathbb{F}_p</math> एक के रूप में <math>\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math>-बीजगणित. बीजगणित संरचना का निरीक्षण करें


<math>\mathbb{F}_p[\varepsilon]/(\varepsilon^2) \to \mathbb{F}_p</math>
<math>\mathbb{F}_p[\varepsilon]/(\varepsilon^2) \to \mathbb{F}_p</math>
ताकतों <math>\varepsilon \mapsto 0</math>. यह संकुल का डिग्री शून्य पद देता है। फिर, क्योंकि हमें कर्नेल को हल करना है <math>\varepsilon \cdot \mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math>, हम इसकी एक प्रति ले सकते हैं <math>\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math> डिग्री में स्थानांतरित <math>2</math> और इसे मैप करें <math>\varepsilon \cdot \mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math>, डिग्री में कर्नेल के साथ <math>3</math><math>\varepsilon \cdot \mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p = \text{Ker}({\displaystyle \mathbb {F} _{p}\otimes _{\mathbb {Z} }^{\mathbf {L} }\mathbb {F} _{p}} \to {\displaystyle \varepsilon \cdot \mathbb {F} _{p}\otimes _{\mathbb {Z} }^{\mathbf {L} }\mathbb {F} _{p}}).</math>हम विभाजित शक्ति बीजगणित के अंतर्निहित मॉड्यूल को प्राप्त करने के लिए इसे पुनरावर्ती रूप से निष्पादित कर सकते हैं<math display="block">(\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p)\langle x \rangle =  
बल <math>\varepsilon \mapsto 0</math> यह संकुल का डिग्री शून्य पद देता है। फिर, क्योंकि हमें कर्नेल <math>\varepsilon \cdot \mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math> को हल करना है, हम डिग्री 2 में स्थानांतरित <math>\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math>की एक प्रति ले सकते हैं और इसे डिग्री <math>\varepsilon \cdot \mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math> में कर्नेल के साथ <math>\varepsilon \cdot \mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p = \text{Ker}({\displaystyle \mathbb {F} _{p}\otimes _{\mathbb {Z} }^{\mathbf {L} }\mathbb {F} _{p}} \to {\displaystyle \varepsilon \cdot \mathbb {F} _{p}\otimes _{\mathbb {Z} }^{\mathbf {L} }\mathbb {F} _{p}}).</math> पर मैप कर सकते हैं, हम विभाजित शक्ति बीजगणित के अंतर्निहित मॉड्यूल को प्राप्त करने के लिए इसे पुनरावर्ती रूप से निष्पादित कर सकते हैं<math display="block">(\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p)\langle x \rangle =  
\frac{
\frac{
(\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p)[x_1,x_2,\ldots]
(\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p)[x_1,x_2,\ldots]
}{x_ix_j = \binom{i+j}{i}x_{i+j}}</math>साथ <math>dx_i = \varepsilon\cdot x_{i-1}</math> और की डिग्री <math>x_i</math> है <math>2i</math>, अर्थात् <math>|x_i| = 2i</math>. इस बीजगणित को टेन्सर करते हुए <math>\mathbb{F}_p</math> ऊपर <math>\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math> देता है<math display="block">HH_*(\mathbb{F}_p) = \mathbb{F}_p\langle x \rangle</math>तब से <math>\varepsilon</math> किसी भी तत्व के साथ गुणा किया गया <math>\mathbb{F}_p</math> शून्य है. बीजगणित संरचना विभाजित शक्ति बीजगणित और विभेदक श्रेणीबद्ध बीजगणित पर सामान्य सिद्धांत से आती है।<ref>{{Cite web|title=Section 23.6 (09PF): Tate resolutions—The Stacks project|url=https://stacks.math.columbia.edu/tag/09PF|access-date=2020-12-31|website=stacks.math.columbia.edu}}</ref> ध्यान दें कि इस गणना को वलय के कारण एक तकनीकी कलाकृति के रूप में देखा जाता है <math>\mathbb{F}_p\langle x \rangle</math> अच्छा व्यवहार नहीं है. उदाहरण के लिए, <math>x^p = 0</math>. इस समस्या का एक तकनीकी जवाब टोपोलॉजिकल होशचाइल्ड होमोलॉजी के माध्यम से है, जहां बेस वलय होती है <math>\mathbb{Z}</math> [[गोलाकार स्पेक्ट्रम]] द्वारा प्रतिस्थापित किया जाता है <math>\mathbb{S}</math>.
}{x_ix_j = \binom{i+j}{i}x_{i+j}}</math><math>dx_i = \varepsilon\cdot x_{i-1}</math> के साथ और<math>x_i</math> की डिग्री <math>2i</math> है, अर्थात् <math>|x_i| = 2i</math> इस बीजगणित को <math>\mathbb{F}_p</math> ओवर <math>\mathbb{F}_p\otimes^\mathbf{L}_\mathbb{Z}\mathbb{F}_p</math> से टेंसर करने पर परिणाम मिलता है<math display="block">HH_*(\mathbb{F}_p) = \mathbb{F}_p\langle x \rangle</math>चूँकि <math>\varepsilon</math> को <math>\mathbb{F}_p</math> में किसी भी तत्व से गुणा करने पर शून्य प्राप्त होता है। बीजगणित संरचना विभाजित शक्ति बीजगणित और विभेदक श्रेणीबद्ध बीजगणित पर सामान्य सिद्धांत से आती है।<ref>{{Cite web|title=Section 23.6 (09PF): Tate resolutions—The Stacks project|url=https://stacks.math.columbia.edu/tag/09PF|access-date=2020-12-31|website=stacks.math.columbia.edu}}</ref> ध्यान दें कि इस गणना को एक तकनीकी कलाकृति के रूप में देखा जाता है क्योंकि वलय <math>\mathbb{F}_p\langle x \rangle</math> का व्यवहार अच्छा नहीं है। उदाहरण के लिए, <math>x^p = 0</math> इस समस्या की एक तकनीकी प्रतिक्रिया टोपोलॉजिकल होशचाइल्ड होमोलॉजी के माध्यम से है, जहां बेस वलय <math>\mathbb{Z}</math> को गोलाकार स्पेक्ट्रम <math>\mathbb{S}</math> द्वारा प्रतिस्थापित किया जाता है।


==टोपोलॉजिकल होशचाइल्ड होमोलॉजी==
==टोपोलॉजिकल होशचाइल्ड होमोलॉजी==
{{Main|Topological Hochschild homology}}
{{Main|Topological Hochschild homology}}
होशचाइल्ड कॉम्प्लेक्स के उपरोक्त निर्माण को अधिक सामान्य स्थितियों के लिए अनुकूलित किया जा सकता है, अर्थात् (कॉम्प्लेक्स) की श्रेणी को प्रतिस्थापित करके।<math>k</math>-एक अनन्त श्रेणी द्वारा मॉड्यूल|∞-श्रेणी (एक टेंसर उत्पाद से सुसज्जित) <math>\mathcal{C}</math>, और<math>A</math>इस श्रेणी में साहचर्य बीजगणित द्वारा। इसे श्रेणी में लागू करना <math>\mathcal{C}=\textbf{Spectra}</math> स्पेक्ट्रम की (टोपोलॉजी), और ''<math>A</math>'' एक साधारण वलय से जुड़ा ईलेनबर्ग-मैकलेन स्पेक्ट्रम होना <math>R</math> टोपोलॉजिकल होशचाइल्ड होमोलॉजी उत्पन्न करता है, जिसे दर्शाया गया है <math>THH(R)</math>. ऊपर प्रस्तुत (गैर-टोपोलॉजिकल) होशचाइल्ड होमोलॉजी को इन पंक्तियों के साथ पुनः व्याख्या की जा सकती है<math>\mathcal{C} = D(\mathbb{Z})</math>की [[व्युत्पन्न श्रेणी]] <math>\Z</math>-मॉड्यूल (∞-श्रेणी के रूप में)।


गोलाकार स्पेक्ट्रम पर टेंसर उत्पादों को टेंसर उत्पादों से प्रतिस्थापित करना <math>\Z</math> (या ईलेनबर्ग-मैकलेन-स्पेक्ट्रम <math>H\Z</math>) एक प्राकृतिक तुलना मानचित्र की ओर ले जाता है <math>THH(R) \to HH(R)</math>. यह 0, 1, और 2 डिग्री में समरूप समूहों पर एक समरूपता उत्पन्न करता है। सामान्य तौर पर, हालांकि, वे भिन्न होते हैं, और<math>THH</math>एचएच की तुलना में सरल समूह उत्पन्न होते हैं। उदाहरण के लिए,
 
होशचाइल्ड कॉम्प्लेक्स के उपरोक्त निर्माण को अधिक सामान्य स्थितियों के लिए अनुकूलित किया जा सकता है, अर्थात् <math>k</math>-मॉड्यूल की श्रेणी (कॉम्प्लेक्स) को ∞-श्रेणी (एक टेंसर उत्पाद से सुसज्जित) द्वारा प्रतिस्थापित करके, <math>\mathcal{C}</math>, और<math>A</math> इस श्रेणी में साहचर्य बीजगणित द्वारा। इसे स्पेक्ट्रा की श्रेणी <math>\mathcal{C}=\textbf{Spectra}</math> पर प्रयुक्त करने से, और ''<math>A</math>'' एक साधारण वलय <math>R</math> से जुड़ा ईलेनबर्ग-मैकलेन स्पेक्ट्रम होने के कारण टोपोलॉजिकल होशचाइल्ड होमोलॉजी प्राप्त होती है, जिसे <math>THH(R)</math> दर्शाया जाता है। ऊपर प्रस्तुत (गैर-टोपोलॉजिकल) होशचाइल्ड होमोलॉजी को <math>\Z</math>-मॉड्यूल (एक ∞-श्रेणी के रूप में) की व्युत्पन्न श्रेणी <math>\mathcal{C} = D(\mathbb{Z})</math> के लिए लेकर, इन पंक्तियों के साथ फिर से व्याख्या की जा सकती है।
 
<math>\Z</math> (या ईलेनबर्ग-मैकलेन-स्पेक्ट्रम <math>H\Z</math> से अधिक टेन्सर उत्पादों द्वारा गोलाकार स्पेक्ट्रम पर टेन्सर उत्पादों को प्रतिस्थापित करने से एक प्राकृतिक तुलना मानचित्र <math>THH(R) \to HH(R)</math> प्राप्त होता है। यह 0, 1, और 2 डिग्री में समरूप समूहों पर एक समरूपता उत्पन्न करता है। सामान्यतः, चूँकि वे भिन्न होते हैं, और <math>THH</math> एचएच की तुलना में सरल समूह उत्पन्न करते हैं। उदाहरण के लिए,


:<math>THH(\mathbb{F}_p) = \mathbb{F}_p[x],</math>
:<math>THH(\mathbb{F}_p) = \mathbb{F}_p[x],</math>
:<math>HH(\mathbb{F}_p) = \mathbb{F}_p\langle x \rangle</math>
:<math>HH(\mathbb{F}_p) = \mathbb{F}_p\langle x \rangle</math>
एक चर में विभाजित शक्तियों की अंगूठी की तुलना में, बहुपद अंगूठी (डिग्री 2 में x के साथ) है।
एक चर में विभाजित शक्तियों की वलय की तुलना में, बहुपद वलय (डिग्री 2 में x के साथ) है।


{{harvs|txt|last=Hesselholt|first=Lars|author-link=Lars Hesselholt|year=2016}} ने दिखाया कि हास्से-वेइल ज़ेटा फ़ंक्शन एक सुचारू उचित किस्म का है <math>\mathbb{F}_p</math> टोपोलॉजिकल होशचाइल्ड होमोलॉजी से जुड़े [[कार्यात्मक निर्धारक]] का उपयोग करके व्यक्त किया जा सकता है।
लार्स हेसलहोल्ट (2016) ने दिखाया कि <math>\mathbb{F}_p</math> पर एक सुचारु उचित किस्म के हस्से-वेइल ज़ेटा फलन को टोपोलॉजिकल होशचाइल्ड होमोलॉजी से जुड़े नियमित निर्धारकों का उपयोग करके व्यक्त किया जा सकता है।


==यह भी देखें==
==यह भी देखें==

Revision as of 08:58, 13 July 2023


गणित में, होशचाइल्ड होमोलॉजी (और कोहोमोलॉजी) वलय पर साहचर्य बीजगणित के लिए एक होमोलॉजी सिद्धांत है। कुछ फ़ंक्शनलर्स की होशचाइल्ड समरूपता के लिए एक सिद्धांत भी है। होशचाइल्ड कोहोमोलॉजी को गेरहार्ड होशचाइल्ड (1945) द्वारा एक क्षेत्र में बीजगणित के लिए प्रस्तुत किया गया था और हेनरी कार्टन और सैमुअल एलेनबर्ग (1956) द्वारा अधिक सामान्य वलय पर बीजगणित तक विस्तारित किया गया था।

बीजगणित की होशचाइल्ड समरूपता की परिभाषा

मान लीजिए कि k एक क्षेत्र है, A एक साहचर्य k-बीजगणित है, और M एक A-बिमॉड्यूल है। A का आवरण बीजगणित इसके विपरीत बीजगणित के साथ A का टेंसर उत्पाद है। A पर बिमॉड्यूल अनिवार्य रूप से A के आवरण बीजगणित पर मॉड्यूल के समान हैं, इसलिए विशेष रूप से A और एम को Ae-मॉड्यूल के रूप में माना जा सकता है। कार्टन और ईलेनबर्ग (1956) ने ए के होशचाइल्ड होमोलॉजी और कोहोमोलॉजी समूह को टोर कारक और एक्सट कारक के संदर्भ में एम में गुणांक के साथ परिभाषित किया गया था ।


होच्सचाइल्ड कॉम्प्लेक्स

मान लीजिए कि k एक वलय है, A एक साहचर्य k-बीजगणित है जो एक प्रक्षेप्य k-मॉड्यूल है, और M एक A-बिमॉड्यूल है। हम K के ऊपर A के n-फोल्ड टेंसर उत्पाद के लिए लिखेंगे। होशचाइल्ड होमोलॉजी को जन्म देने वाली श्रृंखला कॉम्प्लेक्स द्वारा दी गई है

सीमा संचालक द्वारा परिभाषित के साथ

जहां सभी 1 और के लिए A में है। यदि हम मान लें

फिर , इसलिए एक श्रृंखला परिसर है जिसे होशचाइल्ड कॉम्प्लेक्स कहा जाता है, और इसकी समरूपता एम में गुणांक के साथ A की होशचाइल्ड समरूपता है।

टिप्पणी

मानचित्र फेस मैप हैं जो मॉड्यूल के परिवार को बनाते हैं जो कि k-मॉड्यूल की श्रेणी में एक सरल वस्तु है, अथार्त एक कारक Δo → k-mod, जहां Δ सरल श्रेणी है और k-mod है के-मॉड्यूल की श्रेणी। यहां Δo, Δ की विपरीत श्रेणी है। अधःपतन मानचित्रों को परिभाषित किया गया है

होशचाइल्ड होमोलॉजी इस सरल मॉड्यूल की होमोलॉजी है।

बार कॉम्प्लेक्स के साथ संबंध

एक समान दिखने वाला कॉम्प्लेक्स है जिसे बार कॉम्प्लेक्स कहा जाता है जो औपचारिक रूप से होशचाइल्ड कॉम्प्लेक्स[1]पृष्ठ 4-5 पृष्ठ 4-5 के समान दिखता है। वास्तव में, होशचाइल्ड कॉम्प्लेक्स को बार कॉम्प्लेक्स से पुनर्प्राप्त किया जा सकता है

एक स्पष्ट समरूपता दे रहा है।

एक व्युत्पन्न स्व-प्रतिच्छेदन के रूप में

कम्यूटेटिव वलय के स्थिति में होशचाइल्ड कॉम्प्लेक्स की एक और उपयोगी व्याख्या है, और अधिक सामान्यतः कम्यूटेटिव वलय के संग्रहों के लिए: इसका निर्माण व्युत्पन्न योजना से किया गया है | एक योजना (गणित) (या यहां तक ​​कि व्युत्पन्न योजना) के व्युत्पन्न स्व-प्रतिच्छेदन से कुछ आधार योजना पर . उदाहरण के लिए, हम योजनाओं का व्युत्पन्न फाइबर उत्पाद बना सकते हैं

जिसमें व्युत्पन्न वलय का पुलिंदा है। फिर, यदि X को विकर्ण मानचित्र के साथ एम्बेड करें
होशचाइल्ड कॉम्प्लेक्स का निर्माण विकर्ण उत्पाद योजना में विकर्ण के व्युत्पन्न स्व-प्रतिच्छेदन के पुलबैक के रूप में किया गया है
इस व्याख्या से, यह स्पष्ट होना चाहिए कि होशचाइल्ड होमोलॉजी का काहलर अंतर से कुछ संबंध होना चाहिए क्योंकि काहलर अंतर को विकर्ण से स्व-प्रतिच्छेदन का उपयोग करके परिभाषित किया जा सकता है, या अधिक सामान्यतः, कोटैंजेंट कॉम्प्लेक्स चूंकि यह काहलर अंतर के लिए व्युत्पन्न प्रतिस्थापन है। हम सेटिंग द्वारा क्रमविनिमेय -बीजगणित के होशचाइल्ड कॉम्प्लेक्स की मूल परिभाषा को पुनर्प्राप्त कर सकते हैं
और
फिर, होशचाइल्ड कॉम्प्लेक्स अर्ध-समरूपता या |अर्ध-समरूपी है
यदि एक समतल है -बीजगणित, फिर समरूपता की श्रृंखला है
होशचाइल्ड कॉम्प्लेक्स की एक वैकल्पिक किंतु समकक्ष प्रस्तुति दे रहा हूँ।

कारको की होशचाइल्ड समरूपता

सरल वृत्त परिमित नुकीले सेटों की में एक सरल वस्तु है, अर्थात, एक फ़नकार इस प्रकार, यदि F एक फ़नकार है, तो हमें F के साथ रचना करके एक सरल मॉड्यूल मिलता है

इस सरल मॉड्यूल की समरूपता कारक एफ की होशचाइल्ड समरूपता है। क्रमविनिमेय बीजगणित के होशचाइल्ड समरूपता की उपरोक्त परिभाषा एक विशेष स्थिति है जहां F लोडे कारक है।

लोडे कारक

परिमित नुकीले सेटों की श्रेणी के लिए एक स्केलेटन (श्रेणी सिद्धांत) वस्तुओं द्वारा दिया गया है

जहां 0 आधारबिंदु है, और आकारिकी सेट मानचित्रों को संरक्षित करने वाला आधारबिंदु है। मान लीजिए A एक क्रमविनिमेय k-बीजगणित है और M एक सममित A-बिमॉड्यूल है लॉडे फ़ैक्टर को में ऑब्जेक्ट पर दिया गया है

एक रूपवाद

द्वारा दिए गए रूपवाद पर भेजा जाता है

जहाँ


बीजगणित की होशचाइल्ड समरूपता का एक और विवरण

एक सममित A-बिमॉड्यूल एम में गुणांक के साथ एक क्रमविनिमेय बीजगणित A की होशचाइल्ड समरूपता रचना से जुड़ी समरूपता है

और यह परिभाषा उपरोक्त से सहमत है।

उदाहरण

होशचाइल्ड होमोलॉजी गणनाओं के उदाहरणों को अधिक सामान्य प्रमेयों के साथ कई अलग-अलग स्थितियों में स्तरीकृत किया जा सकता है, जो एक सहयोगी बीजगणित ए के लिए होमोलॉजी समूहों और होमोलॉजी वलय की संरचना का वर्णन करते हैं। क्रमविनिमेय बीजगणित के स्थिति के लिए, एक संख्या है विशेषता से अधिक गणनाओं का वर्णन करने वाले प्रमेयों से होमोलॉजी और कोहोमोलॉजी की गणना की सीधी समझ प्राप्त होती है।

क्रमविनिमेय विशेषता 0 स्थिति

क्रमविनिमेय बीजगणित जहां के स्थिति में, होशचाइल्ड होमोलॉजी में चिकने बीजगणित और अधिक सामान्य गैर-सपाट बीजगणित से संबंधित दो मुख्य प्रमेय हैं; किंतु दूसरा पहले का प्रत्यक्ष सामान्यीकरण है। सहज स्थिति में, अथार्त एक सहज बीजगणित के लिए, होशचाइल्ड-कोस्टेंट-रोसेनबर्ग प्रमेय[2]पृष्ठ 43-44 में कहा गया है कि एक समरूपता है

प्रत्येक के लिए। इस समरूपता को एंटी-सिमेट्रिज़ेशन मानचित्र का उपयोग करके स्पष्ट रूप से वर्णित किया जा सकता है। अर्थात् एक विभेदक -रूप में मानचित्र होता है
यदि बीजगणित चिकना या सपाट भी नहीं है, तो कोटैंजेंट कॉम्प्लेक्स का उपयोग करते हुए एक अनुरूप प्रमेय है। एक सरल समाधान के लिए, हम सेट करते हैं। फिर, पर एक अवरोही -निस्पंदन उपस्थित है जिसके वर्गीकृत टुकड़े समरूपी हैं
ध्यान दें कि यह प्रमेय न केवल सुचारु बीजगणित के लिए, किंतु स्थानीय पूर्ण प्रतिच्छेदन बीजगणित के लिए भी होशचाइल्ड समरूपता की गणना करना सुलभ बनाता है। इस स्थिति में, के लिए एक प्रस्तुति दी गई है, कोटैंजेंट कॉम्प्लेक्स दो-टर्म कॉम्प्लेक्स है

परिमेय पर बहुपद वलय

एक सरल उदाहरण -जनरेटर के साथ की एक बहुपद वलय की होशचाइल्ड होमोलॉजी की गणना करना है। एचकेआर प्रमेय समरूपता देता है

जहां बीजगणित -जनरेटर में से अधिक मुक्त एंटीसिमेट्रिक बीजगणित है। इसकी उत्पाद संरचना वैक्टर के वेज उत्पाद द्वारा दी गई है
के लिए .

क्रमविनिमेय विशेषता पी केस

विशेषता p स्थिति में, होशचाइल्ड-कोस्टेंट-रोसेनबर्ग प्रमेय का एक उपयोगी प्रति-उदाहरण है जो होशचाइल्ड होमोलॉजी को परिभाषित करने के लिए सरल बीजगणित से परे एक सिद्धांत की आवश्यकता को स्पष्ट करता है। -बीजगणित पर विचार करें। हम मुक्त अंतर श्रेणीबद्ध बीजगणित के रूप में के रिज़ॉल्यूशन की गणना कर सकते हैं

व्युत्पन्न प्रतिच्छेदन दे रहा है जहां और अंतर शून्य मानचित्र है। इसका कारण यह है कि हम ऊपर दिए गए कॉम्प्लेक्स को द्वारा टेंसर करते हैं, जिससे डिग्री में जनरेटर के साथ एक औपचारिक कॉम्प्लेक्स मिलता है, जिसका वर्ग होता है फिर, होशचाइल्ड कॉम्प्लेक्स द्वारा दिया गया है
इसकी गणना करने के लिए, हमें समाधान करना होगा एक के रूप में -बीजगणित. बीजगणित संरचना का निरीक्षण करें

बल यह संकुल का डिग्री शून्य पद देता है। फिर, क्योंकि हमें कर्नेल को हल करना है, हम डिग्री 2 में स्थानांतरित की एक प्रति ले सकते हैं और इसे डिग्री में कर्नेल के साथ पर मैप कर सकते हैं, हम विभाजित शक्ति बीजगणित के अंतर्निहित मॉड्यूल को प्राप्त करने के लिए इसे पुनरावर्ती रूप से निष्पादित कर सकते हैं

के साथ और की डिग्री है, अर्थात् इस बीजगणित को ओवर से टेंसर करने पर परिणाम मिलता है
चूँकि को में किसी भी तत्व से गुणा करने पर शून्य प्राप्त होता है। बीजगणित संरचना विभाजित शक्ति बीजगणित और विभेदक श्रेणीबद्ध बीजगणित पर सामान्य सिद्धांत से आती है।[3] ध्यान दें कि इस गणना को एक तकनीकी कलाकृति के रूप में देखा जाता है क्योंकि वलय का व्यवहार अच्छा नहीं है। उदाहरण के लिए, इस समस्या की एक तकनीकी प्रतिक्रिया टोपोलॉजिकल होशचाइल्ड होमोलॉजी के माध्यम से है, जहां बेस वलय को गोलाकार स्पेक्ट्रम द्वारा प्रतिस्थापित किया जाता है।

टोपोलॉजिकल होशचाइल्ड होमोलॉजी


होशचाइल्ड कॉम्प्लेक्स के उपरोक्त निर्माण को अधिक सामान्य स्थितियों के लिए अनुकूलित किया जा सकता है, अर्थात् -मॉड्यूल की श्रेणी (कॉम्प्लेक्स) को ∞-श्रेणी (एक टेंसर उत्पाद से सुसज्जित) द्वारा प्रतिस्थापित करके, , और इस श्रेणी में साहचर्य बीजगणित द्वारा। इसे स्पेक्ट्रा की श्रेणी पर प्रयुक्त करने से, और एक साधारण वलय से जुड़ा ईलेनबर्ग-मैकलेन स्पेक्ट्रम होने के कारण टोपोलॉजिकल होशचाइल्ड होमोलॉजी प्राप्त होती है, जिसे दर्शाया जाता है। ऊपर प्रस्तुत (गैर-टोपोलॉजिकल) होशचाइल्ड होमोलॉजी को -मॉड्यूल (एक ∞-श्रेणी के रूप में) की व्युत्पन्न श्रेणी के लिए लेकर, इन पंक्तियों के साथ फिर से व्याख्या की जा सकती है।

(या ईलेनबर्ग-मैकलेन-स्पेक्ट्रम से अधिक टेन्सर उत्पादों द्वारा गोलाकार स्पेक्ट्रम पर टेन्सर उत्पादों को प्रतिस्थापित करने से एक प्राकृतिक तुलना मानचित्र प्राप्त होता है। यह 0, 1, और 2 डिग्री में समरूप समूहों पर एक समरूपता उत्पन्न करता है। सामान्यतः, चूँकि वे भिन्न होते हैं, और एचएच की तुलना में सरल समूह उत्पन्न करते हैं। उदाहरण के लिए,

एक चर में विभाजित शक्तियों की वलय की तुलना में, बहुपद वलय (डिग्री 2 में x के साथ) है।

लार्स हेसलहोल्ट (2016) ने दिखाया कि पर एक सुचारु उचित किस्म के हस्से-वेइल ज़ेटा फलन को टोपोलॉजिकल होशचाइल्ड होमोलॉजी से जुड़े नियमित निर्धारकों का उपयोग करके व्यक्त किया जा सकता है।

यह भी देखें

संदर्भ

  1. Morrow, Matthew. "अंकगणितीय ज्यामिति में टोपोलॉजिकल होशचाइल्ड होमोलॉजी" (PDF). Archived (PDF) from the original on 24 Dec 2020.
  2. Ginzburg, Victor (2005-06-29). "नॉनकम्यूटेटिव ज्योमेट्री पर व्याख्यान". arXiv:math/0506603.
  3. "Section 23.6 (09PF): Tate resolutions—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-12-31.


बाहरी संबंध

परिचयात्मक लेख

क्रमविनिमेय मामला

  • Antieau, Benjamin; Bhatt, Bhargav; Mathew, Akhil (2019). "विशेषता पी में होशचाइल्ड-कोस्टेंट-रोसेनबर्ग के प्रतिउदाहरण". arXiv:1909.11437 [math.AG].

नॉनकम्यूटेटिव केस

श्रेणी:वलय सिद्धांत श्रेणी:होमोलॉजिकल बीजगणित