दोहरा आधार: Difference between revisions

From Vigyanwiki
No edit summary
Line 120: Line 120:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 06/07/2023]]
[[Category:Created On 06/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 12:42, 14 July 2023

रैखिक बीजगणित में, सदिश समिष्ट के साथ आधार दिया गया है,और इसमे सदिश (गणित और भौतिकी) को सूचकांक समूह के लिए अनुक्रमित किया गया जिसमें सूची ( की प्रमुखता के आयाम से होती है), द्वारा सूचीबद्ध सदिश होते हैं। का द्विप्रतिभूत समूह, समान सूची के द्वारा द्विप्रतिभूत समिष्ट के सदिश का समूह होता है, जिसके अनुसार और बायोर्थोगोनल प्रणाली बनाते हैं। द्विप्रतिभूत समूह सदैव रैखिक रूप से स्वतंत्र होता है जिसका अर्थ होता है कि में कोई सदिश अन्य में सदिश के रैखिक विस्तार के रूप में लिखा नहीं जा सकता है। हालांकि, यह आवश्यक नहीं है कि यह पूरे द्विप्रतिभूत समिष्ट को आवरण करें। यदि यह पूरे द्विप्रतिभूत समिष्ट को आवरण करता है, तो उसे "द्विप्रतिभूत आधार" या "प्रतिशोधी आधार" कहा जाता है।

अनुक्रमित सदिश समूह को इस रूप में निरूपित करते हैं: और , यदि तत्वों के अनुक्रमित समान होते हैं तो द्विपरक होना अर्थ है कि उनका आंतरिक गुणांक 1 होता है, और अन्यथा 0 होता है। प्रतीकात्मक रूप से, मूल समिष्ट में सदिश पर द्वित्वीय सदिश की मूल्यांकन :

यहाँ क्रोनकर डेल्टा प्रतीक है।

परिचय

सदिश के साथ संचालन करने के लिए, हमारे पास इसके घटकों की गणना करने की सीधी विधि होनी चाहिए। कार्टेशियन फ्रेम में, आवश्यक ऑपरेशन सदिश और बेस सदिश के बीच डॉट उत्पाद होता है।[1] उदाहरण के लिए,

जहां कार्टेशियन फ्रेम में बेस होती हैं। सदिश के घटकों को निम्नलिखित द्वारा प्राप्त किया जा सकता है:

यद्यपि, गैर-कार्टेशियन फ्रेम में, हमें आवश्यकता नहीं होती कि सभी ,() तथापि, यह सदैव संभव होता है कि सदिश को ढूंढा जा सकता है जिसके लिए निम्नलिखित संबंध स्थापित होता है:

यह समीकरण जब , का द्वित्वीय समूह होता है। ध्यान दें कि अनुक्रम के समिष्ट पर अंक में अंतर होता है। .

कार्टेशियन फ्रेम में, हमारे पास होता है।

अस्तित्व और विशिष्टता

द्वित्वीय समूह सदैव उपस्थित होती है और वह V से V में इंजेक्शन प्रदान करती है, निरंतर वह मानचित्रण है जो vi को vi पर भेजता है। यह विशेष रूप से दर्शाता है, कि द्वित्वीय समिष्ट की आयाम V की आयाम से अधिक या उसके समान होती है।

यद्यपि, असीमित-आयामी V की द्वित्वीय समूह अपने द्वित्वीय समिष्ट V को नहीं छात्रित करती है। उदाहरण के लिए, V में से V में मानचित्रण व्याख्यान V के लिए मान w को विचार करें, जहां w(vi) = 1 हर i के लिए। यह मानचित्रण व्याख्यान सभी vi i पर स्पष्ट रूप से गैरशून्य है। यदि w द्वित्वीय आधार सदिश vi के सीमित रूप होती, उदाहरण के लिए जहां K एक सीमित उपसमय I का होता है, तो किसी भी j जो K में नहीं है के लिए, , होगा,यह w की परिभाषा के खंडन को प्रतिरोधित करता है। इसलिए, यह w द्वित्वीय समूह के छायांकन में नहीं होती है।

असीमित-आयामी समिष्ट का द्वित्वीय समिष्ट मूल समिष्ट से अधिक आयाम (यह अधिक असीमित सर्वाधिक गणितीयता) रखता है, और इसलिए इनमें ऐसा आधार नहीं हो सकता है जिसमें ही सूची संख्या हो। चूंकि, सदिश समिष्ट के लिए, द्वित्वीय समूह उपस्थित होती है, जो मूल समिष्ट के समान द्वित्वीय समिष्ट के समानरूप स्पर्श करती है। इसके अतिरिक्त, टोपोलॉजिकल सदिश समिष्ट के लिए, नियमित द्वित्वीय समिष्ट परिभाषित किया जा सकता है, जिसके अंतर्गत द्वित्वीय आधार उपस्थित हो सकता है।

परिमित-आयामी सदिश रिक्त स्थान

आधार सदिश समिष्ट के लिए, द्वित्वीय समूह सदैव द्वित्वीय आधार होती है और यह अद्वितीय होती है। इन आधारों को इस प्रकार से चिह्नित किया जाता है: और । यदि हम कोसदिश को सदिश पर मूल्यांकन के रूप में चिह्नित करते हैं, तो द्वित्वीयता की शर्त इस प्रकार होती है:

द्वित्वीय आधार का एकत्व आधार के साथ संबद्धता आधार के समिष्ट के आधार के समिष्ट के बीच से नक्शा देता है, और यह भी विस्मृति है। टोपोलॉजिकल क्षेत्र के लिए, द्वित्वियों की समिष्ट टोपोलॉजिकल समिष्ट होती है, और इसे इन समिष्ट के आधारों के स्टिफ़ेल मैनिफ़ोल्ड के बीच होमियोमोर्फिज्म देता है।

दोहरे समिष्ट का श्रेणीबद्ध और बीजगणितीय निर्माण

सदिश समिष्ट (मापांक (गणित)) के द्वित्वीय समिष्ट को श्रेणीय दृष्टिकोण में परिचय देने के लिए और विधि है। इसके लिए, को मॉड्यूल मानकीकृत किया जाता है जो अवधारणाओं के ऊपर (अर्थात्, श्रेणी में वस्तु ) की वस्तु होता है। तब हम , का द्वित्वीय स्थान, जिसे , से चिह्नित किया जाता है, निम्नलिखित रूप में परिभाषित करते हैं: , जो सभी -रैखिक मापांक होमोमॉर्फिज़म का मॉड्यूल होता है, जो से . तक होते हैं। इसका अर्थ है कि हम द्वित्वीय को द्वित्वीय के रूप में परिभाषित कर सकते हैं, जिसे द्विगुण के रूप में चिह्नित किया जाता है , और इसे निम्न रूप में परिभाषित किया जाता है:

द्वित्वीय समिष्ट के लिए आधार का समर्पित निर्माण करने के लिए, हम अब अपनी दृष्टि को सीमित करेंगे जहां सीमित-आयामी मुक्त (बायां) -मॉड्यूल, है, जहाँ एकता युक्त अवधारणा के साथ अवधारणा है। फिर, हम मानते हैं कि समूह , के लिए आधार है। यहां से, हम आधार पर क्रोनेकर डेल्टा फ़ंक्शन द्वारा परिभाषित करते हैं बायां के लिए जहां यदि है और यदि .है। तब समूह प्रत्येक के साथ लचीला स्वतंत्र समूह का वर्णन करता है। चूंकि सीमित-आयामी है, इसलिए आधार पसीमित-आयामी है। फिर, समूह को के लिए आधार बताता है और मुक्त (दायां) -मापांक होता है|

उदाहरण

निर्देशीय रूप में उदाहरण के रूप में, (कार्तीय तल) के मानक आधार सदिश हैं

और उसके द्वितीय समिष्ट के मानक आधार सदिश हैं

त्रिआयामी यूक्लिडीय अंतर्वास्त्र में, दिए गए आधार , के लिए, द्विपक्षीय (द्वित्वीय) आधार निम्नलिखित सूत्रों द्वारा प्राप्त किया जा सकता है:

यहाँ T स्थानान्तरण को दर्शाता है और

यह आधार सदिश और द्वारा बनाए गए त्रिपादीय अनुपात के चतुर्भुज के द्वारा बनाए गए परलेलेपाइपेड के आयतन को दर्शाता है।

सामान्यतः, सीमित-आयामी सदिश समिष्ट के आधार के द्वित्वीय आधार को निम्न रूप से सीधे निर्धारित किया जा सकता है: दिए गए आधार और संबंधित द्वित्वीय आधार के लिए हम निम्नलिखित मैट्रिक्स बना सकते हैं:

तब द्वित्वीय आधार के परिभाषित गुण का प्रमाणित करता है कि

इसलिए द्वित्वीय आधार के लिए मैट्रिक्स की गणना की जा सकती है जैसे कि

यह भी देखें

टिप्पणियाँ

संदर्भ

  • Lebedev, Leonid P.; Cloud, Michael J.; Eremeyev, Victor A. (2010). Tensor Analysis With Applications to Mechanics. World Scientific. ISBN 978-981431312-4.
  • "Finding the Dual Basis". Stack Exchange. May 27, 2012.