सतत स्टोकेस्टिक प्रक्रिया: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 106: | Line 106: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 07/07/2023]] | [[Category:Created On 07/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 12:50, 14 July 2023
संभाव्यता सिद्धांत में, एक सतत स्टोकेस्टिक प्रक्रिया एक प्रकार की प्रसंभाव्य प्रक्रिया है जिसे इसके समय या सूचकांक पैरामीटर के एक कार्य के रूप में कहा जा सकता है। निरंतरता एक प्रक्रिया के लिए एक उचित गुण है, चूंकि इसका तात्पर्य यह है कि वे कुछ अर्थों में अच्छी तरह से व्यवहार करते हैं, और इसलिए, विश्लेषण करना बहुत आसान है। यहां यह निहित है कि प्रसंभाव्य प्रक्रिया का सूचकांक एक सतत चर राशि है।[1] कुछ लेखक एक "निरंतर प्रक्रिया" को परिभाषित करते हैं, जिसके लिए केवल यह आवश्यक है कि प्रतिरूप पथों की निरंतरता के बिना, सूचकांक चर राशि निरंतर हो: कुछ शब्दावली में, यह "असतत" के समानांतर एक निरंतर-समय वाली प्रसंभाव्य प्रक्रिया होगी। समय प्रक्रिया संभावित भ्रम को देखते हुए सावधानी नियंत्रण की जरूरत है।[1]
परिभाषाएँ
(Ω, Σ, P) एक संभाव्यता स्थान है, T समय का कुछ अंतराल है, और X : T × Ω → S एक प्रसंभाव्य प्रक्रिया है। सरलता के लिए, इस लेख का शेष भाग S को वास्तविक रेखा R मान लेगा, परंतु परिभाषाएँ यथोचित परिवर्तनों से गुजरती हैं यदि S Rn एक मानक वेक्टर स्थान है, या यहां तक कि एक सामान्य मीट्रिक स्थान भी है।
सम्भावना एक के साथ निरंतरता
निश्चित समय में t∈T, X को t पर 'संभावना निरंतरता' कहा जाता है।
- यदि
माध्य-वर्ग निरंतरता
निश्चित समय में t∈T, X को t पर 'माध्य-वर्ग निरंतरता' कहा जाता है यदि 'E'[|Xt|2]<+∞ और
संभाव्यता में निरंतरता
निश्चित समय में t ∈ T, X को t पर 'संभाव्यता निरंतरता' कहा जाता है यदि, सभी ε > 0 के लिए,
समान रूप से, यदि समय t पर X संभाव्यता में निरंतर है।
वितरण में निरंतरता
किसी समय t∈T, X को t पर 'वितरण निरंतरता' कहा जाता है।
सभी अंकों x के लिए जिस पर Ft निरंतर है, जहाँ Ft यादृच्छिक चर राशि Xt के संचयी वितरण कार्य को दर्शाता है।
प्रतिरूप निरंतरता
यदि Xt(ω) P-लगभग सभी ω ∈ Ω के लिए t में सतत है तो X को प्रतिरूप सतत कहा जाता है। प्रतिरूप निरंतरता इटो प्रसार जैसी प्रक्रियाओं के लिए निरंतरता की उचित धारणा है।
फेलर निरंतरता
X को फेलर-निरंतर प्रक्रिया कहा जाता है, यदि किसी निश्चित t ∈ T और किसी परिबद्ध, निरंतर और Σ-मापने योग्य कार्य g: S → R के लिए, Ex[g(Xt)] लगातार x पर निर्भर करता है। यहां x प्रक्रिया X की प्रारंभिक स्थिति को दर्शाता है, और Ex उस घटना पर सशर्त अपेक्षा को दर्शाता है जब X, x पर प्रारंभ होता है।
संबंध
प्रसंभाव्य प्रक्रियाओं की विभिन्न प्रकार की निरंतरता के बीच संबंध यादृच्छिक चर राशि के विभिन्न प्रकार के अभिसरण के बीच संबंधों के समान हैं।
विशेष रूप से:
- संभाव्यता के साथ निरंतरता का तात्पर्य संभाव्यता में निरंतरता से है;
- माध्य-वर्ग में निरंतरता का तात्पर्य संभाव्यता में निरंतरता से है;
- संभाव्यता के साथ निरंतरता, माध्य-वर्ग में निरंतरता का न तो तात्पर्य है, और न ही इसका निहितार्थ है;
- संभाव्यता में निरंतरता का तात्पर्य वितरण में निरंतरता से है, परंतु यह निहित नहीं है।
प्रतिरूप निरंतरता के साथ निरंतरता को संभाव्यता के साथ भ्रमित करना है। समय t पर प्रायिकता एक के साथ निरंतरता का मतलब है कि P(At) = 0, जहां घटना At द्वारा दी गई है
और यह जांचना पूरी तरह से संभव है कि यह प्रत्येक t ∈ T के लिए सही है या नहीं। दूसरी ओर, प्रतिरूप निरंतरता के लिए यह आवश्यक है कि P(A) = 0, जहां
A घटनाओं का एक असंख्य संघ है, इसलिए यह वास्तव में स्वयं एक घटना नहीं हो सकता है, इसलिए P(A) अपरिभाषित हो सकता है! भले ही A एक घटना है, P(A) सख्ती से सकारात्मक हो सकता है, भले ही प्रत्येक t ∈ T के लिए P(At) = 0 हो। उदाहरण के लिए, टेलीग्राफ प्रक्रिया के साथ यही स्थिति है।
टिप्पणियाँ
- ↑ 1.0 1.1 Dodge, Y. (2006) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9 (Entry for "continuous process")
संदर्भ
- Kloeden, Peter E.; Platen, Eckhard (1992). Numerical solution of stochastic differential equations. Applications of Mathematics (New York) 23. Berlin: Springer-Verlag. pp. 38–39. ISBN 3-540-54062-8.
- Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications (Sixth ed.). Berlin: Springer. ISBN 3-540-04758-1. (See Lemma 8.1.4)