होमोटोपी: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 27: | Line 27: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 12:54, 14 July 2023
बीजगणितीय सांस्थितिकी में गणित का एक क्षेत्र सांस्थितिक समष्टि का होमोटोपी समूह उस समष्टि के स्व-होमियोमोर्फिज्म के समूह का एक होमोटॉपी समूह है।
परिभाषा
होमोटोपी समूह गुणांक प्रत्येक समूह से संबद्ध सांस्थितिक समष्टि को निरंतर मानचित्र के होमोटॉपी वर्गों के समूह को निर्दिष्ट करता है। समष्टि पर अन्य निर्मित सभी स्व-होमियोमोर्फिज्म समूह के समूह है, जिसे द्वारा दर्शाया गया है यदि एक स्थानीय रूप से संक्षिप्त स्थानीय संबद्ध हॉसडॉर्फ समष्टि है तो आर.एरेन्स का एक मौलिक परिणाम कहता है कि वास्तव में संक्षिप्त विवृत सांस्थितिक के अंतर्गत एक सांस्थितिक समूह है।
उपरोक्त धारणाओं के अंतर्गत के लिए होमोटोपी समूहों को इस प्रकार परिभाषित किया गया है:
इस प्रकार के लिए मानचित्रण वर्ग समूह है। दूसरे शब्दों में मानचित्रण वर्ग समूह से संबद्ध घटकों का समूह है, जैसा कि गुणांक द्वारा निर्दिष्ट किया गया है।
उदाहरण
डेन-नील्सन प्रमेय के अनुसार यदि एक सवृत सतह है तो अर्थात, किसी समष्टि के स्वसमाकृतिकता का शून्यवाँ होमोटॉपी समूह उसके मौलिक समूह के बाहरी स्वसमाकृतिकता समूह के समान होता है।
संदर्भ
- McCarty, G.S. (1963). "Homeotopy groups" (PDF). Transactions of the American Mathematical Society. 106 (2): 293–304. doi:10.1090/S0002-9947-1963-0145531-9. JSTOR 1993771.
- Arens, R. (1946). "Topologies for homeomorphism groups". American Journal of Mathematics. 68 (4): 593–610. doi:10.2307/2371787. JSTOR 2371787.