इक्विपोलेंस (ज्यामिति): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:


==समानांतर चतुर्भुज गुण==
==समानांतर चतुर्भुज गुण==
[[File:Newton-1.jpg|thumb|250px|यदि खंड एबी और सीडी समपरावर्तक हैं, तो एसी और बीडी भी समध्रुवक हैं]]यूक्लिडियन स्पेस की एक निश्चित विशेषता वैक्टर की समांतर [[चतुर्भुज]] संपत्ति है:
[[File:Newton-1.jpg|thumb|250px|यदि खंड एबी और सीडी समपरावर्तक हैं, तो एसी और बीडी भी समध्रुवक हैं]]यूक्लिडियन स्पेस का डेफ़िनिटिव फीचर सदिश का समांतर [[चतुर्भुज]] गुण होता है, यदि दो खण्ड इक्विपोलेंट के रूप में होते है  तो समांतरचतुर्भुज की दो भुजाएँ बनती है
यदि दो खंड समध्रुवक हैं, तो वे एक समांतर चतुर्भुज की दो भुजाएँ बनाते हैं:
{{Block quote|text=यदि कोई दिया गया सदिश ''a'' ,''b'', ''c'' और ''d'' के बीच है, तो a और c के बीच जो सदिश है, वह वही है जो b और d के बीच है। .|author=[[बर्ट्रेंड रसेल]]|source=''[[गणित के सिद्धांत]]'', page 432}}
{{Block quote|text=If a given vector holds between ''a'' and ''b'', ''c'' and ''d'', then the vector which holds between ''a'' and ''c'' is the same as that which holds between ''b'' and ''d''.|author=[[Bertrand Russell]]|source=''[[The Principles of Mathematics]]'', page 432}}


==इतिहास==
==इतिहास==
Line 16: Line 15:
इस प्रकार विपरीत दिशा वाले खंड एक दूसरे के नकारात्मक हैं: <math>AB + BA \bumpeq 0 .</math>
इस प्रकार विपरीत दिशा वाले खंड एक दूसरे के नकारात्मक हैं: <math>AB + BA \bumpeq 0 .</math>
:संतुलन <math>AB \bumpeq n.CD ,</math> जहाँ n एक धनात्मक संख्या को दर्शाता है, यह दर्शाता है कि AB दोनों समानांतर हैं और उनकी दिशा CD के समान है, और उनकी लंबाई का संबंध AB = n.CD द्वारा व्यक्त किया गया है।<ref>Michael J. Crowe (1967) [[A History of Vector Analysis]], "Giusto Bellavitis and His Calculus of Equipollences", pp 52–4, [[University of Notre Dame Press]]</ref>
:संतुलन <math>AB \bumpeq n.CD ,</math> जहाँ n एक धनात्मक संख्या को दर्शाता है, यह दर्शाता है कि AB दोनों समानांतर हैं और उनकी दिशा CD के समान है, और उनकी लंबाई का संबंध AB = n.CD द्वारा व्यक्त किया गया है।<ref>Michael J. Crowe (1967) [[A History of Vector Analysis]], "Giusto Bellavitis and His Calculus of Equipollences", pp 52–4, [[University of Notre Dame Press]]</ref>
ए से बी तक का खंड एक बाध्य वेक्टर है, जबकि इसके समतुल्य खंडों का वर्ग यूक्लिडियन वैक्टर की भाषा में एक [[मुक्त वेक्टर]] है।
ए से बी तक का खंड एक बाध्य वेक्टर है, जबकि इसके समतुल्य खंडों का वर्ग यूक्लिडियन सदिश की भाषा में एक [[मुक्त वेक्टर]] है।


==विस्तार==
==विस्तार==

Revision as of 23:34, 11 July 2023

समता के लिए प्रतीक

यूक्लिडियन ज्यामिति में, समतुल्यता निर्देशित रेखा खंडों के बीच एक बाइनरी संबंध होता है। बिंदु A से बिंदु B तक एक रेखा खंड AB की दिशा रेखा खंड BA से विपरीत होती है और इस प्रकार दो समानान्तर रेखाखंड ईक्वीपोलेन्ट रूप में होते हैं, जब उनकी लंबाई और दिशा समान होती है।

समानांतर चतुर्भुज गुण

यदि खंड एबी और सीडी समपरावर्तक हैं, तो एसी और बीडी भी समध्रुवक हैं

यूक्लिडियन स्पेस का डेफ़िनिटिव फीचर सदिश का समांतर चतुर्भुज गुण होता है, यदि दो खण्ड इक्विपोलेंट के रूप में होते है तो समांतरचतुर्भुज की दो भुजाएँ बनती है

यदि कोई दिया गया सदिश a ,b, c और d के बीच है, तो a और c के बीच जो सदिश है, वह वही है जो b और d के बीच है। .

इतिहास

समविषम रेखा खंडों की अवधारणा को 1835 में सही बेलावाइटिस द्वारा आगे बढ़ाया गया था। इसके बाद समविषम रेखा खंडों के एक वर्ग के लिए वेक्टर शब्द को अपनाया गया था। विभिन्न लेकिन समान वस्तुओं की तुलना करने के लिए संबंध (गणित) के विचार का बेल्लावाइटिस का उपयोग एक सामान्य गणितीय तकनीक बन गया है, विशेष रूप से तुल्यता संबंधों के उपयोग में। बेलावाइटिस ने एबी और सीडी खंडों की समरूपता के लिए एक विशेष संकेतन का उपयोग किया:

माइकल जे. क्रो द्वारा अनुवादित निम्नलिखित अंश, बेलावाइटिस की यूक्लिडियन वेक्टर अवधारणाओं की प्रत्याशा को दर्शाते हैं:

जब कोई उनमें रेखाओं के स्थान पर अन्य रेखाओं को प्रतिस्थापित करता है, जो क्रमशः उनके लिए समध्रुवक होती हैं, तब भी समरूपताएँ कायम रहती हैं, भले ही वे अंतरिक्ष में स्थित हों। इससे यह समझा जा सकता है कि किसी भी संख्या और किसी भी प्रकार की रेखाओं का योग कैसे किया जा सकता है, और इन रेखाओं को जिस भी क्रम में लिया जाए, वही समपरागण-योग प्राप्त होगा...
समतापों में, समीकरणों की तरह, एक रेखा को एक तरफ से दूसरी तरफ स्थानांतरित किया जा सकता है, बशर्ते कि चिह्न बदल दिया जाए...

इस प्रकार विपरीत दिशा वाले खंड एक दूसरे के नकारात्मक हैं:

संतुलन जहाँ n एक धनात्मक संख्या को दर्शाता है, यह दर्शाता है कि AB दोनों समानांतर हैं और उनकी दिशा CD के समान है, और उनकी लंबाई का संबंध AB = n.CD द्वारा व्यक्त किया गया है।[1]

ए से बी तक का खंड एक बाध्य वेक्टर है, जबकि इसके समतुल्य खंडों का वर्ग यूक्लिडियन सदिश की भाषा में एक मुक्त वेक्टर है।

विस्तार

ज्यामितीय समरूपता का उपयोग गोले पर भी किया जाता है:

डब्ल्यू. आर. हैमिल्टन|हैमिल्टन की पद्धति की सराहना करने के लिए, आइए सबसे पहले यूक्लिडियन त्रि-आयामी अंतरिक्ष में अनुवाद के एबेलियन समूह के बहुत सरल मामले को याद करें। प्रत्येक अनुवाद अंतरिक्ष में एक वेक्टर के रूप में प्रस्तुत किया जा सकता है, केवल दिशा और परिमाण महत्वपूर्ण है, और स्थान अप्रासंगिक है। दो अनुवादों की संरचना वेक्टर जोड़ के हेड-टू-टेल समांतर चतुर्भुज नियम द्वारा दी गई है; और विपरीत दिशा लेने का अर्थ उलटी दिशा लेना है। हैमिल्टन के घुमावों के सिद्धांत में, हमारे पास एबेलियन अनुवाद समूह से गैर-एबेलियन एसयू(2) तक ऐसी तस्वीर का सामान्यीकरण है। अंतरिक्ष में सदिशों के बजाय, हम एक इकाई गोले S पर < π लंबाई के निर्देशित बड़े वृत्त चापों से निपटते हैं2यूक्लिडियन त्रि-आयामी अंतरिक्ष में। ऐसे दो चाप समतुल्य माने जाते हैं यदि एक को उसके बड़े वृत्त के साथ सरकाकर दूसरे के साथ संपाती बनाया जा सके।[2]

एक गोले के एक बड़े वृत्त पर, दो निर्देशित गोलाकार चाप समध्रुवीय होते हैं जब वे दिशा और चाप की लंबाई में सहमत होते हैं। ऐसे चापों का एक तुल्यता वर्ग एक चतुर्भुज छंद से जुड़ा होता है

जहां a चाप की लंबाई है और r लंबवतता द्वारा बड़े वृत्त के तल को निर्धारित करता है।

संदर्भ

  1. Michael J. Crowe (1967) A History of Vector Analysis, "Giusto Bellavitis and His Calculus of Equipollences", pp 52–4, University of Notre Dame Press
  2. N. Mukunda, Rajiah Simon and George Sudarshan (1989) "The theory of screws: a new geometric representation for the group SU(1,1), Journal of Mathematical Physics 30(5): 1000–1006 MR0992568


बाहरी संबंध