आयतन रूप: Difference between revisions
No edit summary |
No edit summary |
||
Line 56: | Line 56: | ||
आयतन फॉर्म को विभिन्न प्रकार से निरूपित किया जाता है | आयतन फॉर्म को विभिन्न प्रकार से निरूपित किया जाता है | ||
<math display=block>\omega = \mathrm{vol}_n = \varepsilon = {\star}(1).</math> | <math display=block>\omega = \mathrm{vol}_n = \varepsilon = {\star}(1).</math> | ||
यहां ही <math>{\star}</math> हॉज तारा है, इस प्रकार अंतिम रूप | यहां ही <math>{\star}</math> हॉज तारा है, इस प्रकार अंतिम रूप <math>{\star} (1),</math> इस बात पर जोर देता है कि वॉल्यूम फॉर्म मैनिफोल्ड पर स्थिर मानचित्र का हॉज डुअल है, जो लेवी-सिविटा टेंसर <math>\varepsilon.</math>के बराबर होता है। | ||
यद्यपि | |||
यद्यपि ग्रीक अक्षर <math>\omega</math> वॉल्यूम फॉर्म को दर्शाने के लिए अधिकांशतः उपयोग किया जाता है, यह नोटेशन यूनिवर्सल नहीं है और इस प्रकार प्रतीक <math>\omega</math> [[विभेदक ज्यामिति|अवकलक ज्यामिति]] में जैसे कि सहानुभूतिपूर्ण रूप में कई अन्य अर्थ होते हैं। | |||
==आयतन फॉर्म के अपरिवर्तनीय== | ==आयतन फॉर्म के अपरिवर्तनीय== |
Revision as of 23:54, 9 July 2023
गणित में, आयतन फॉर्म या शीर्ष-आयामी फॉर्म अवकलन मैनीफोल्ड आयाम के बराबर डिग्री का एक अवकलक फॉर्म होता है। इस प्रकार मैनीफोल्ड पर आयाम का , वॉल्यूम फॉर्म एक -प्रपत्र के रूप में होता है। यह लाइन बंडल के अनुभाग (फाइबर बंडल) के स्थान का एक तत्व के रूप में होता है, इसे , के रूप में घोषित किया जाता है, . मैनिफोल्ड कहीं न लुप्त होने वाले आयतन फॉर्म को स्वीकार करता है यदि और केवल यदि वह ओरियंटेबल है। एक ओरिएंटेबल मैनिफोल्ड में अनंत रूप से कई वॉल्यूम फॉर्म होते हैं, क्योंकि वॉल्यूम फॉर्म को एक फलन द्वारा गुणा करने पर दूसरा वॉल्यूम फॉर्म प्राप्त होता है। गैर-ओरियंटेबल मैनिफोल्ड्स पर इसके अतिरिक्त घनत्व की कमजोर धारणा को परिभाषित किया जा सकता है।
एक वॉल्यूम फॉर्म एक भिन्न मैनिफोल्ड पर एक फलन (गणित) के अभिन्न अंग को परिभाषित करने का एक साधन प्रदान करता है। दूसरे शब्दों में, एक वॉल्यूम फॉर्म एक माप (गणित) को जन्म देता है जिसके संबंध में फलनों को उपयुक्त लेब्सग समाकलन द्वारा एकीकृत किया जा सकता है। वॉल्यूम फॉर्म का निरपेक्ष मान एक वॉल्यूम तत्व के रूप में होता है, जिसे विभिन्न प्रकार से ट्विस्टेड वॉल्यूम फॉर्म या प्सयूडो -वॉल्यूम फॉर्म के रूप में भी जाना जाता है। यह एक माप को भी परिभाषित करता है, लेकिन किसी भी अवकलक चाहे वह ओरियंटेबल हो या नहीं हो पर इसकी विविधता पर सम्मलित होता है।
काहलर मैनिफोल्ड्स, जटिल मैनिफोल्ड्स होने के कारण स्वाभाविक रूप से ओरियंटेबल होते हैं और इसलिए उनके पास वॉल्यूम फॉर्म होता है। अधिक सामान्यतः, सिंपलेक्टिक मैनिफ़ोल्ड पर सिंपलेक्टिक रूप की बाहरी शक्ति एक आयतन फॉर्म होती है। मैनिफोल्ड्स के कई वर्गों में कैनोनिकल वॉल्यूम फॉर्म होते हैं चूंकि उनके पास अतिरिक्त संरचना होती है जो पसंदीदा वॉल्यूम फॉर्म की चॉइस की अनुमति देती है। ओरिएंटेड प्सयूडो रीमैनियन मैनिफोल्ड में एक संबद्ध कैनोनिकल वॉल्यूम फॉर्म के रूप में होता है।
ओरिएंटेशन
नीचे केवल अवकलनीयता मैनिफ़ोल्ड के ओरिएंटेशन के बारे में बताया जाता है, यह किसी भी टोपोलॉजिकल मैनिफोल्ड पर परिभाषित एक अधिक सामान्य धारणा है।
एक मैनिफोल्ड एडजस्टेबल होता है, यदि इसमें एक निर्देशांक एटलस होता है, जिसके सभी ट्रांजीशन फलनों में धनात्मक जैकोबियन डीटरमीनेट होते हैं। ऐसे अधिकतम एटलस का चयन एक ओरिएंटेशन के रूप में होता है, एक वॉल्यूम फॉर्म पर निर्देशांक चार्ट के एटलस के रूप में प्राकृतिक विधि से एक ओरिएंटेशन को जन्म देता है, जिससे कि वह यूक्लिडियन वॉल्यूम फॉर्म के धनात्मक गुणक के लिए के रूप में होते है।
वॉल्यूम फॉर्म पर फ्रेम के पसंदीदा वर्ग के विनिर्देशन की भी अनुमति देता है और इस प्रकार स्पर्शरेखा सदिश के आधार को दाएँ हाथ से कॉल करते है यदि यह इस रूप में होते है
सभी दाएं हाथ के फ़्रेमों के संग्रह पर धनात्मक डीटरमीनेट के साथ आयामों में सामान्य रैखिक मैपिंग के समूह द्वारा कार्य किया जाता है और इस प्रकार सामान्य रैखिक समूह मानचित्रण में धनात्मक डीटरमीनेट के साथ आयाम के रूप में सिद्धांत बनाते हैं के रैखिक फ्रेम बंडल का उप-बंडल के रूप में होता है और इसलिए वॉल्यूम फॉर्म से जुड़ा ओरिएंटेशन फ्रेम बंडल की कैनोनिकल कमी देता है, जो कि संरचना समूह के साथ एक उप-बंडल में होते है का तात्पर्य यह है कि आयतन फॉर्म G संरचना को जन्म देता है संरचना पर फ़्रेमों पर विचार करके कमी स्पष्ट रूप से संभव है,
-
(1)
इस प्रकार एक आयतन रूप एक संरचना को भी जन्म देता है। इसके विपरीत एक दिया गया संरचना विशेष रैखिक फ़्रेमों के लिए (1) लगाकर और फिर आवश्यक n फॉर्म को हल करके वॉल्यूम फॉर्म को पुनर्प्राप्त कर सकती है और इस प्रकार अपने तर्कों में एकरूपता की आवश्यकता होती है।
मैनिफोल्ड ओरिएंटेबल यदि इसमें कहीं भी गायब होने वाला वॉल्यूम फॉर्म न हो तो वास्तव में, के रूप में एक विरूपण प्रत्यावर्तन होता है, जहां धनात्मक वास्तविकताएं अदिश आव्यूह के रूप में अंतर्निहित हैं। इस प्रकार प्रत्येक संरचना को कम किया जा सकता है और इस प्रकार संरचना,और संरचनाएँ ओरिएंटेशन के साथ मेल खाती हैं, चूंकि अधिक ठोस रूप से, डीटरमीनेट बंडल की ट्रिवियल ओरिएंटेबिलिटी के बराबर होती है और एक लाइन बंडल ट्रिवियल के रूप में होता है यदि केवल इसमें कहीं भी गायब होने वाला अनुभाग नहीं होता है। इस प्रकार, वॉल्यूम फॉर्म का अस्तित्व ओरिएंटेबिलिटी के बराबर होता है।
मापन से संबंध
वॉल्यूम फॉर्म दिया गया है एक ओरियंटेबल मैनिफोल्ड पर घनत्व ओरिएंटेशन को भूलकर प्राप्त नॉनओरिएंटेड मैनिफोल्ड पर एक वॉल्यूम प्सयूडो फॉर्म के रूप में होते है। घनत्व को सामान्यतः नॉन ओरिएंटेशन मैनिफोल्ड्स पर परिभाषित किया जाता है।
कोई भी आयतन प्सयूडो फॉर्म बोरेल सेट पर एक माप को परिभाषित करता है और इसलिए कोई भी आयतन फॉर्म को परिभाषित करता है
इसके अतिरिक्त, सामान्य उपायों को निरंतर या सुचारू होने की आवश्यकता नहीं होती है, उन्हें वॉल्यूम फॉर्म द्वारा परिभाषित करने की आवश्यकता नहीं होती है और इस प्रकार अधिक औपचारिक रूप से किसी दिए गए वॉल्यूम फॉर्म के संबंध में उनके रेडॉन-निकोडिम अवकलज को बिल्कुल निरंतर होने की आवश्यकता नहीं होती है।
डिवर्जेंनेस
वॉल्यूम फॉर्म दिया गया है पर कोई सदिश क्षेत्र के डिवर्जेंनेस को परिभाषित करता है अद्वितीय अदिश-मान फलन के रूप में, द्वारा दर्शाया गया संतोषजनक देने वाले होते है
सोलेनॉइडल सदिश क्षेत्र वे हैं जिनके साथ लाई अवकलज की परिभाषा से यह पता चलता है कि वॉल्यूम फॉर्म को सोलेनोइडल सदिश क्षेत्र के सदिश प्रवाह के तहत संरक्षित किया जाता है। इस प्रकार सोलनॉइडल सदिश फ़ील्ड सटीक रूप से वे होते हैं जिनमें वॉल्यूम-संरक्षण प्रवाह होता है। यह तथ्य सर्वविदित है, उदाहरण के लिए, द्रव यांत्रिकी में जहां एक वेग क्षेत्र का विचलन एक तरल पदार्थ की संपीड़न क्षमता को मापता है, जो बदले में तरल पदार्थ के प्रवाह के साथ मात्रा को संरक्षित करने की सीमा को दर्शाता है।
विशेष स्थिति
लाई समूह
किसी भी लाई समूह के लिए, एक प्राकृतिक वॉल्यूम फॉर्म को अनुवाद द्वारा परिभाषित किया जा सकता है। अर्थात यदि का एक तत्व है तब एक वाम-अपरिवर्तनीय रूप को परिभाषित किया जा सकता है जहाँ वाम-अनुवाद के रूप में होते है, परिणामस्वरूप प्रत्येक लाई समूह ओरियंटेबल होता है। यह आयतन फॉर्म एक अदिश राशि तक अद्वितीय होता है और संबंधित माप को हार मापन के रूप में जाना जाता है।
सिंपलेक्टिक मैनिफोल्ड्स
किसी भी सिंपलेक्टिक मैनिफोल्ड या वास्तव में किसी भी लगभग सिंपलेक्टिक मैनिफोल्ड का एक प्राकृतिक आयतन फॉर्म होता है। यदि M, सरलीकृत रूप के साथ एक 2n आयामी मैनिफोल्ड है, तब सहानुभूतिपूर्ण रूप की गैर-अपघटन के परिणामस्वरूप कहीं भी शून्य नहीं होता है और इस प्रकार परिणाम के रूप में कोई भी सिम्प्लेक्टिक मैनिफोल्ड ओरियंटेबल के रूप में होता है। यदि मैनिफोल्ड सिम्प्लेक्टिक और रीमैनियन दोनों रूप में होता है, यदि मैनिफोल्ड काहलर है तो दो वॉल्यूम फॉर्म सहमत हैं।
रीमैनियन वॉल्यूम फॉर्म
किसी भी ओरिएंटेशन स्यूडो रीमैनियन मैनिफोल्ड का एक प्राकृतिक आयतन फॉर्म होता है और इस प्रकार स्थानीय निर्देशांक में, इसे इस प्रकार व्यक्त किया जा सकता है,
आयतन फॉर्म को विभिन्न प्रकार से निरूपित किया जाता है
यद्यपि ग्रीक अक्षर वॉल्यूम फॉर्म को दर्शाने के लिए अधिकांशतः उपयोग किया जाता है, यह नोटेशन यूनिवर्सल नहीं है और इस प्रकार प्रतीक अवकलक ज्यामिति में जैसे कि सहानुभूतिपूर्ण रूप में कई अन्य अर्थ होते हैं।
आयतन फॉर्म के अपरिवर्तनीय
वॉल्यूम फॉर्म अद्वितीय नहीं हैं; वे निम्नानुसार मैनिफोल्ड पर गैर-लुप्त होने वाले फलनों पर एक मरोड़ बनाते हैं। एक गैर-लुप्त होने वाला कार्य दिया गया पर और एक वॉल्यूम फॉर्म पर एक वॉल्यूम फॉर्म है इसके विपरीत, दो खंड रूप दिए गए हैं उनका अनुपात एक गैर-लुप्त होने वाला कार्य है (यदि वे समान ओरिएंटेशन को परिभाषित करते हैं तो सकारात्मक, यदि वे विपरीत ओरिएंटेशन को परिभाषित करते हैं तो ऋणात्मक )।
निर्देशांक में, वे दोनों केवल एक गैर-शून्य फलन समय लेब्सेग माप हैं, और उनका अनुपात फलन का अनुपात है, जो निर्देशांक की पसंद से स्वतंत्र है। आंतरिक रूप से, यह रेडॉन-निकोडिम प्रमेय#रेडॉन.E2.80.93निकोडिम अवकलज है|रेडॉन-निकोडिम अवकलज इसके संबंध में एक ओरिएंटेड मैनिफोल्ड पर, किन्हीं दो वॉल्यूम रूपों की आनुपातिकता को रेडॉन-निकोडिम प्रमेय के ज्यामितीय रूप के रूप में माना जा सकता है।
कोई स्थानीय संरचना नहीं
मैनिफ़ोल्ड पर वॉल्यूम फॉर्म की कोई स्थानीय संरचना नहीं होती है, इस अर्थ में कि छोटे खुले सेटों पर दिए गए वॉल्यूम फॉर्म और यूक्लिडियन स्पेस पर वॉल्यूम फॉर्म के बीच अंतर करना संभव नहीं है। (Kobayashi 1972). यानी हर बिंदु के लिए में वहाँ एक खुला पड़ोस है का और एक भिन्नता का एक खुले सेट पर इस तरह कि वॉल्यूम बनता रहे का ठहराना है साथ में एक परिणाम के रूप में, यदि और दो मैनिफ़ोल्ड हैं, प्रत्येक वॉल्यूम फॉर्म के साथ फिर किसी भी बिंदु के लिए खुले पड़ोस हैं का और का और एक नक्शा इस तरह कि वॉल्यूम बनता रहे पड़ोस तक ही सीमित है वॉल्यूम फॉर्म पर वापस खींचता है पड़ोस तक ही सीमित है : एक आयाम में, कोई इसे इस प्रकार सिद्ध कर सकता है: वॉल्यूम फॉर्म दिया गया है पर परिभाषित करना
वैश्विक संरचना: आयतन
कनेक्टेड मैनिफोल्ड पर एक वॉल्यूम फॉर्म एक एकल वैश्विक अपरिवर्तनीय, अर्थात् (समग्र) आयतन, दर्शाया गया है जो आयतन-रूप संरक्षित मानचित्रों के अंतर्गत अपरिवर्तनीय है; यह अनंत हो सकता है, जैसे कि लेब्सग्यू माप के लिए डिस्कनेक्टेड मैनिफोल्ड पर, प्रत्येक जुड़े घटक का आयतन अपरिवर्तनीय होता है।
प्रतीकों में, यदि अनेक गुनाओं की एक समरूपता है जो पीछे की ओर खींचती है को तब
वॉल्यूम फॉर्म को कवरिंग मानचित्रों के नीचे भी वापस खींचा जा सकता है, इस स्थिति में वे फाइबर की कार्डिनैलिटी (औपचारिक रूप से, फाइबर के साथ एकीकरण द्वारा) द्वारा वॉल्यूम को गुणा करते हैं। अनंत शीट वाले आवरण के मामले में (जैसे ), एक परिमित वॉल्यूम मैनिफोल्ड पर एक वॉल्यूम फॉर्म अनंत वॉल्यूम मैनिफोल्ड पर एक वॉल्यूम फॉर्म में वापस खींचता है।
यह भी देखें
- Cylindrical coordinate system § Line and volume elements
- Measure (mathematics)
- पोंकारे मीट्रिक जटिल तल पर वॉल्यूम फॉर्म की समीक्षा प्रदान करता है
- Spherical coordinate system § Integration and differentiation in spherical coordinates
संदर्भ
- Kobayashi, S. (1972), Transformation Groups in Differential Geometry, Classics in Mathematics, Springer, ISBN 3-540-58659-8, OCLC 31374337.
- Spivak, Michael (1965), Calculus on Manifolds, Reading, Massachusetts: W.A. Benjamin, Inc., ISBN 0-8053-9021-9.