आंतरिक माप: Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
m (4 revisions imported from alpha:आंतरिक_माप) |
(No difference)
|
Revision as of 09:21, 15 July 2023
गणित में, विशेष रूप से माप सिद्धांत में, एक आंतरिक माप किसी दिए गए सम्मुच्चय (गणित) के घात समुच्चय पर एक फलन (गणित) होता है, जिसमें विस्तारित वास्तविक रेखा में मान होते हैं, जो कुछ तकनीकी स्थितियों को संतुष्ट करते हैं। सहज रूप से, किसी सम्मुच्चय का आंतरिक माप उस सम्मुच्चय के आकार की निचली सीमा है।
परिभाषा
आंतरिक माप एक निर्धारित फलन है
एक समुच्चय के सभी उपसमुच्चयों पर परिभाषित है जो निम्नलिखित परिस्थिति को पूरा करता है:
- शून्य निरर्थक सम्मुच्चय: निरर्थक सम्मुच्चय में शून्य आंतरिक माप है (यह भी देखें: शून्य मापें); वह है,
- अतियोज्य: किसी भी असंयुक्त सम्मुच्चय और के लिए
- ह्वासमान स्तंभ की सीमाएँ: किसी भी क्रम के लिए सम्मुच्चय ऐसे कि प्रत्येक और के लिए निम्न है
- अनंत तक पहुंचना चाहिए: यदि एक सम्मुच्चय के लिए फिर प्रत्येक सकारात्मक वास्तविक संख्या के लिए वहाँ कुछ इस प्रकार उपस्थित है कि
किसी माप से प्रेरित आंतरिक माप
मान लीजिये σ-बीजगणित पर एक सम्मुच्चय और पर एक उपाय (गणित) हो। फिर भीतर का माप प्रेरक द्वारा परिभाषित किया गया है
अनिवार्य रूप से यह सुनिश्चित करके किसी भी सम्मुच्चय के आकार की निचली सीमा देता है कि वह कम से कम उतना बड़ा हो -इसमें से किसी एक का माप -मापने योग्य उपसमुच्चय है भले ही सम्मुच्चय फलन सामान्यतः कोई माप नहीं है, निम्नलिखित गुणों को उपायों के साथ साझा करता है:
- गैर-नकारात्मक है,
- अगर तब
पूर्णता माप
किसी माप को बड़े σ-बीजगणित तक विस्तारित करने के लिए प्रेरित आंतरिक मापों का उपयोग प्रायः बाहरी माप के साथ संयोजन में किया जाता है। अगर σ-बीजगणित पर परिभाषित ऊपर एक सीमित माप है और और संगत प्रेरित बाहरी और आंतरिक उपाय हैं, फिर सम्मुच्चय इस तरह कि एक σ-बीजगणित के साथ निम्न है
सभी एक माप है जिसे के पूरा होने के रूप में जाना जाता है।
यह भी देखें
संदर्भ
- हेल्मोस, पॉल आर., मेज़र थ्योरी, डी. वैन नॉस्ट्रैंड कंपनी, इंक, 1950, pp. 58.
- ए. एन. कोलमोगोरोव और एस. वी. फ़ोमिन, रिचर्ड ए. सिल्वरमैन द्वारा अनुवादित, परिचयात्मक वास्तविक विश्लेषण, डोवर प्रकाशन, न्यूयॉर्क, 1970, ISBN 0-486-61226-0 (Chapter 7)