जनक समुच्चय का समूह: Difference between revisions

From Vigyanwiki
No edit summary
(Text)
Line 1: Line 1:
{{Use American English|date = January 2019}}
{{Use American English|date = January 2019}}
{{Short description|Abstract algebra concept}}
{{Short description|Abstract algebra concept}}
[[File:One5Root.svg|thumb|सम्मिश्र तल में एकता की 5वीं जड़ें गुणन के अंतर्गत एक [[समूह (गणित)]] बनाती हैं। प्रत्येक गैर-पहचान तत्व समूह उत्पन्न करता है।]][[अमूर्त बीजगणित]] में, '''किसी समूह एक उत्पादक सेट''' समूह सेट का एक उपसमुच्चय होता है, जैसे कि समूह के प्रत्येक तत्व को उपसमुच्चय के कई तत्वों और उनके व्युत्क्रमों के संयोजन (समूह संचालन के तहत) के रूप में व्यक्त किया जा सकता है।
[[File:One5Root.svg|thumb|सम्मिश्र तल में एकता की 5वीं जड़ें गुणन के अंतर्गत एक [[समूह (गणित)|समूह]] बनाती हैं। प्रत्येक गैर-पहचान तत्व समूह उत्पन्न करता है।]][[अमूर्त बीजगणित]] में, '''किसी समूह एक उत्पादक सेट''' समूह सेट का एक उपसमुच्चय होता है, जैसे कि समूह के प्रत्येक तत्व को उपसमुच्चय के कई तत्वों और उनके व्युत्क्रमों के संयोजन (समूह संचालन के तहत) के रूप में व्यक्त किया जा सकता है।


दूसरे शब्दों में, यदि <math>S</math> समूह <math>G</math> का एक उपसमूह है, तो <math>\langle S\rangle</math>, <math>S</math> द्वारा उत्पन्न  [[उपसमूह]], <math>G</math> का सबसे छोटा उपसमूह है, <math>S</math> का सबसे छोटा उपसमूह है, जो तत्वों वाले सभी उपसमूहों के प्रतिच्छेदन के बराबर है। <math>S</math>; समान रूप से, <math>\langle S\rangle</math> के सभी तत्वों का उपसमूह है <math>G</math> जिसे तत्वों के परिमित उत्पाद के रूप में व्यक्त किया जा सकता है <math>S</math> और उनके व्युत्क्रम. (ध्यान दें कि व्युत्क्रम की आवश्यकता केवल तभी होती है जब समूह अनंत हो; एक सीमित समूह में, किसी तत्व के व्युत्क्रम को उस तत्व की शक्ति के रूप में व्यक्त किया जा सकता है।)
दूसरे शब्दों में, यदि <math>S</math> समूह <math>G</math> का एक उपसमूह है, तो <math>\langle S\rangle</math>, <math>S</math> ''द्वारा उत्पन्न  [[उपसमूह]]'', <math>G</math> का सबसे छोटा उपसमूह है, <math>S</math> का सबसे छोटा उपसमूह है, जो <math>S</math> के तत्वों वाले सभी उपसमूहों के प्रतिच्छेदन के बराबर है; समान रूप से, <math>\langle S\rangle</math> <math>G</math> के सभी तत्वों का उपसमूह है जिसे <math>S</math> में तत्वों और व्युत्क्रमों के परिमित उत्पाद के रूप में व्यक्त किया जा सकता है। (ध्यान दें कि व्युत्क्रम की आवश्यकता केवल तभी होती है जब समूह अनंत हो; एक सीमित समूह में, किसी तत्व के व्युत्क्रम को उस तत्व की घात के रूप में व्यक्त किया जा सकता है।)


अगर <math>G=\langle S\rangle</math>, तो हम ऐसा कहते हैं <math>S</math> उत्पन्न करता है <math>G</math>, और इसमें मौजूद तत्व <math>S</math> जनरेटर या समूह जनरेटर कहलाते हैं। अगर <math>S</math> तो, खाली सेट है <math>\langle S\rangle</math> [[तुच्छ समूह]] है <math>\{e\}</math>, चूँकि हम खाली उत्पाद को ही पहचान मानते हैं।
यदि <math>G=\langle S\rangle</math>, तो हम ऐसा कहते हैं <math>S</math>, <math>G</math>उत्पन्न करता है, और <math>S</math> के तत्वों को जनरेटर या समूह जनरेटर कहा जाता है। यदि <math>S</math> तो, खाली सेट है, तो <math>\langle S\rangle</math> [[तुच्छ समूह|नगण्य समूह]] <math>\{e\}</math> है, क्योंकि हम खाली उत्पाद को पहचान मानते हैं।


जब केवल एक ही तत्व हो <math>x</math> में <math>S</math>, <math>\langle S\rangle</math> आमतौर पर इस तरह लिखा जाता है <math>\langle x\rangle</math>. इस मामले में, <math>\langle x\rangle</math> की शक्तियों का चक्रीय उपसमूह है <math>x</math>, एक [[चक्रीय समूह]], और हम कहते हैं कि यह समूह किसके द्वारा उत्पन्न होता है <math>x</math>. किसी तत्व को कहने के बराबर <math>x</math> एक समूह उत्पन्न करता है जो ऐसा कह रहा है <math>\langle x\rangle</math> पूरे समूह के बराबर है <math>G</math>. [[परिमित समूह]]ों के लिए, यह भी ऐसा कहने के बराबर है <math>x</math> आदेश है (समूह सिद्धांत) <math>|G|</math>.
जब <math>S</math> में केवल एक तत्व <math>x</math> होता है, तो <math>\langle S\rangle</math> को प्रायः <math>\langle x\rangle</math> के रूप में लिखा जाता है। इस मामले में, <math>\langle x\rangle</math> एक चक्रीय समूह, <math>x</math>, की घातों का [[चक्रीय समूह|''चक्रीय उपसमूह'']] है, और हम कहते हैं कि यह समूह <math>x</math> किसके द्वारा उत्पन्न होता है। यह कहने के बराबर है कि एक तत्व <math>x</math> एक समूह उत्पन्न करता है, यह कह रहा है कि यह संपूर्ण समूह <math>G</math> के बराबर है। [[परिमित समूह|परिमित समूहों]] के लिए, यह भी ऐसा कहने के बराबर है कि <math>\langle x\rangle</math> का क्रम <math>|G|</math> है।


एक समूह को अनंत संख्या में जनरेटर की आवश्यकता हो सकती है। उदाहरण के लिए परिमेय संख्याओं का योगात्मक समूह <math>\Q</math> अंतिम रूप से उत्पन्न नहीं होता है। यह सभी पूर्णांकों के व्युत्क्रमों द्वारा उत्पन्न होता है, लेकिन इन जनरेटरों की किसी भी सीमित संख्या को जनरेटिंग सेट से हटाए बिना जनरेटिंग सेट से हटाया जा सकता है। इस तरह के मामले में, जनरेटिंग सेट के सभी तत्व फिर भी गैर-जनरेटिंग तत्व हैं, जैसा कि वास्तव में पूरे समूह के सभी तत्व हैं - नीचे [[फ्रैटिनी उपसमूह]] देखें।
एक समूह को अनंत संख्या में जनरेटर की आवश्यकता हो सकती है। उदाहरण के लिए परिमेय संख्याओं <math>\Q</math> का योगात्मक समूह परिमित रूप से उत्पन्न नहीं होता है। यह सभी पूर्णांकों के व्युत्क्रमों द्वारा उत्पन्न होता है, लेकिन इन जनरेटरों की किसी भी सीमित संख्या को जनरेटिंग सेट से हटाए बिना जनरेटिंग सेट से हटाया जा सकता है। इस तरह के मामले में, जनरेटिंग सेट के सभी तत्व फिर भी "गैर-जेनरेटिंग तत्व" हैं, जैसा कि वास्तव में पूरे समूह के सभी तत्व हैं - नीचे [[फ्रैटिनी उपसमूह]] देखें।


अगर <math>G</math> एक [[टोपोलॉजिकल समूह]] है फिर एक उपसमुच्चय <math>S</math> का <math>G</math> टोपोलॉजिकल जेनरेटर का एक सेट कहा जाता है यदि <math>\langle S\rangle</math> [[सघन सेट]] है <math>G</math>, यानी का [[समापन (टोपोलॉजी)]]<math>\langle S\rangle</math> पूरा समूह है <math>G</math>.
यदि <math>G</math> एक [[टोपोलॉजिकल समूह]] है तो <math>G</math> के उपसमुच्चय <math>S</math> को ''टोपोलॉजिकल जनरेटर'' का एक सेट कहा जाता है यदि <math>\langle S\rangle</math> <math>G</math> में [[सघन सेट]] है,अर्थात <math>\langle S\rangle</math>का [[समापन (टोपोलॉजी)|समापन]] संपूर्ण समूह <math>G</math> है।


==अंततः उत्पन्न समूह==
==अंततः उत्पन्न समूह==
{{main|Finitely generated group}}
{{main|अंततः उत्पन्न समूह}}
अगर <math>S</math> परिमित है, फिर एक समूह <math>G=\langle S\rangle</math> परिमित रूप से उत्पन्न कहा जाता है। विशेष रूप से [[अंतिम रूप से उत्पन्न एबेलियन समूह]]ों की संरचना का आसानी से वर्णन किया गया है। कई प्रमेय जो अंतिम रूप से उत्पन्न समूहों के लिए सत्य हैं, सामान्य तौर पर समूहों के लिए विफल हो जाते हैं। यह सिद्ध हो चुका है कि यदि एक परिमित समूह एक उपसमुच्चय द्वारा उत्पन्न होता है <math>S</math>, तो प्रत्येक समूह तत्व को वर्णमाला के एक शब्द के रूप में व्यक्त किया जा सकता है <math>S</math> समूह के क्रम से कम या उसके बराबर लंबाई का।


प्रत्येक परिमित समूह परिमित रूप से उत्पन्न होता है <math>\langle G\rangle =G</math>. जोड़ के अंतर्गत [[पूर्णांक]] एक अनंत समूह का उदाहरण है जो 1 और -1 दोनों द्वारा परिमित रूप से उत्पन्न होता है, लेकिन योग के तहत परिमेय संख्या का समूह परिमित रूप से उत्पन्न नहीं किया जा सकता है। कोई भी [[बेशुमार]] समूह परिमित रूप से उत्पन्न नहीं किया जा सकता। उदाहरण के लिए, जोड़ के अंतर्गत वास्तविक संख्याओं का समूह, <math>(\R,+)</math>.
यदि <math>S</math> परिमित है, तो समूह <math>G=\langle S\rangle</math> को ''परिमित रूप से उत्पन्न'' कहा जाता है। विशेष रूप से [[अंतिम रूप से उत्पन्न एबेलियन समूह|अंतिम रूप से उत्पन्न एबेलियन समूहों]] की संरचना का आसानी से वर्णन किया गया है। कई प्रमेय जो अंतिम रूप से उत्पन्न समूहों के लिए सत्य हैं, सामान्यतः समूहों के लिए विफल हो जाते हैं। यह सिद्ध हो चुका है कि यदि एक उपसमुच्चय <math>S</math> द्वारा एक परिमित समूह उत्पन्न होता है, तो प्रत्येक समूह तत्व को समूह के क्रम से कम या उसके बराबर लंबाई वाले वर्णमाला <math>S</math> के एक शब्द के रूप में व्यक्त किया जा सकता है।


एक ही समूह के विभिन्न उपसमुच्चय उपसमुच्चय उत्पन्न कर सकते हैं। उदाहरण के लिए, यदि <math>p</math> और <math>q</math> के साथ पूर्णांक हैं {{math|1=[[greatest common divisor|gcd]](''p'',&nbsp;''q'')&nbsp;=&nbsp;1}}, तब <math>\{p,q\}</math> बेज़आउट की पहचान द्वारा जोड़ के तहत पूर्णांकों का समूह भी उत्पन्न करता है।
प्रत्येक परिमित समूह <math>\langle G\rangle =G</math> के बाद से परिमित रूप से उत्पन्न होता है। जोड़ के अंतर्गत [[पूर्णांक]] एक अनंत समूह का उदाहरण है जो 1 और -1 दोनों द्वारा परिमित रूप से उत्पन्न होता है, लेकिन योग के तहत परिमेय संख्या का समूह परिमित रूप से उत्पन्न नहीं किया जा सकता है। कोई भी [[बेशुमार|असंख्य]] समूह परिमित रूप से उत्पन्न नहीं किया जा सकता। उदाहरण के लिए, जोड़ के अंतर्गत वास्तविक संख्याओं का समूह, <math>(\R,+)</math> है।


हालांकि यह सच है कि एक परिमित रूप से उत्पन्न समूह का प्रत्येक [[भागफल समूह]] परिमित रूप से उत्पन्न होता है (भागफल में जनरेटर की छवियां एक परिमित उत्पन्न करने वाला सेट देती हैं), एक परिमित रूप से उत्पन्न समूह के एक उपसमूह को परिमित रूप से उत्पन्न करने की आवश्यकता नहीं होती है। उदाहरण के लिए, चलो <math>G</math> दो जनरेटरों में [[मुक्त समूह]] बनें, <math>x</math> और <math>y</math> (जो स्पष्ट रूप से अंतिम रूप से उत्पन्न होता है, क्योंकि <math>G=\langle \{x,y\}\rangle</math>), और जाने <math>S</math> के सभी तत्वों से युक्त उपसमुच्चय बनें <math>G</math> रूप का <math>y^nxy^{-n}</math> किसी [[प्राकृतिक संख्या]] के लिए <math>n</math>. <math>\langle S\rangle</math> अनगिनत अनगिनत जनरेटरों में मुक्त समूह के लिए समरूपता है, और इसलिए इसे अंतिम रूप से उत्पन्न नहीं किया जा सकता है। हालाँकि, एक सीमित रूप से उत्पन्न [[एबेलियन समूह]] का प्रत्येक उपसमूह अपने आप में एक सीमित रूप से उत्पन्न होता है। वास्तव में, और अधिक कहा जा सकता है: सभी अंतिम रूप से उत्पन्न समूहों का वर्ग [[समूह विस्तार]] के तहत बंद है। इसे देखने के लिए, (अंततः उत्पन्न) [[सामान्य उपसमूह]] और भागफल के लिए एक जनरेटिंग सेट लें। फिर सामान्य उपसमूह के लिए जेनरेटर, भागफल के लिए जेनरेटर की पूर्वछवियों के साथ मिलकर, समूह उत्पन्न करते हैं।
एक ही समूह के विभिन्न उपसमुच्चय, उपसमुच्चय उत्पन्न कर सकते हैं। उदाहरण के लिए, यदि <math>p</math> और <math>q</math> {{math|1=[[greatest common divisor|gcd]](''p'',&nbsp;''q'')&nbsp;=&nbsp;1}} के साथ पूर्णांक हैं, तो <math>\{p,q\}</math> बेज़आउट की पहचान द्वारा जोड़ के तहत पूर्णांकों का समूह भी उत्पन्न करता है।
 
हालांकि यह सच है कि एक परिमित रूप से उत्पन्न समूह का प्रत्येक [[भागफल समूह|भागफल]] परिमित रूप से उत्पन्न होता है (भागफल में जनरेटर की छवियां एक परिमित उत्पन्न करने वाला सेट देती हैं), एक परिमित रूप से उत्पन्न समूह के एक उपसमूह को परिमित रूप से उत्पन्न करने की आवश्यकता नहीं होती है। उदाहरण के लिए, मान लीजिए कि <math>G</math> दो जनरेटरों, <math>x</math> और <math>y</math> में [[मुक्त समूह]] है, (जो स्पष्ट रूप से सीमित रूप से उत्पन्न होता है, क्योंकि <math>G=\langle \{x,y\}\rangle</math>), और मान लीजिए कि <math>S</math> किसी [[प्राकृतिक संख्या]] <math>n</math> के लिए <math>y^nxy^{-n}</math>रूप के <math>G</math> के सभी तत्वों से युक्त उपसमुच्चय है। <math>\langle S\rangle</math> अनगिनत जनरेटरों में मुक्त समूह के लिए समरूपी है, और इसलिए इसे अंतिम रूप से उत्पन्न नहीं किया जा सकता है। हालाँकि, एक सीमित रूप से उत्पन्न [[एबेलियन समूह]] का प्रत्येक उपसमूह अपने आप में एक सीमित रूप से उत्पन्न होता है। वास्तव में, और अधिक कहा जा सकता है: सभी अंतिम रूप से उत्पन्न समूहों का वर्ग [[समूह विस्तार|एक्सटेंशन]] के तहत बंद है। इसे देखने के लिए, (अंततः उत्पन्न) [[सामान्य उपसमूह]] और भागफल के लिए एक जनरेटिंग सेट लें। फिर सामान्य उपसमूह के लिए जेनरेटर, भागफल के लिए जेनरेटर की पूर्वछवियों के साथ मिलकर, समूह उत्पन्न करते हैं।


==उदाहरण==
==उदाहरण==
* पूर्णांकों का गुणक_समूह_मॉड्यूलो_n, {{math|1=U<sub>9</sub>&nbsp;=&nbsp;{{mset|1,&nbsp;2,&nbsp;4,&nbsp;5,&nbsp;7,&nbsp;8}}}}, गुणन के अंतर्गत 9 तक के सभी पूर्णांकों का समूह है {{math|1=[[Modular arithmetic|mod]]&nbsp;9}}. ध्यान दें कि 7 का जनरेटर नहीं है {{math|U<sub>9</sub>}}, चूँकि <br /> <math>\{7^i \bmod{9}\ |\ i \in \mathbb{N}\} = \{7,4,1\},</math> <br />जबकि 2 है, चूँकि <br /> <math>\{2^i \bmod{9}\ |\ i \in \mathbb{N}\} = \{2,4,8,7,5,1\}.</math>
* पूर्णांकों का गुणक समूह मॉड्यूलो 9, {{math|1=U<sub>9</sub>&nbsp;=&nbsp;{{mset|1,&nbsp;2,&nbsp;4,&nbsp;5,&nbsp;7,&nbsp;8}}}}, गुणन के अंतर्गत 9 तक के सभी पूर्णांकों का समूह है {{math|1=[[Modular arithmetic|mod]]&nbsp;9}}. ध्यान दें कि 7 का जनरेटर नहीं है {{math|U<sub>9</sub>}}, चूँकि <br /> <math>\{7^i \bmod{9}\ |\ i \in \mathbb{N}\} = \{7,4,1\},</math> <br />जबकि 2 है, चूँकि <br /> <math>\{2^i \bmod{9}\ |\ i \in \mathbb{N}\} = \{2,4,8,7,5,1\}.</math>
* अन्य हाथों पर<sub>n</sub>, डिग्री n का [[सममित समूह]], n > 2 होने पर किसी एक तत्व द्वारा उत्पन्न नहीं होता है (चक्रीय_समूह नहीं है)। हालाँकि, इन मामलों में S<sub>n</sub> हमेशा दो क्रमपरिवर्तनों द्वारा उत्पन्न किया जा सकता है जो कि Permutation#Cycle_notation में (1 2) और के रूप में लिखे गए हैं {{math|1=(1&nbsp;2&nbsp;3&nbsp;...&nbsp;''n'')}}. उदाहरण के लिए, S के 6 तत्व<sub>3</sub> दो जनरेटरों, (1 2) और (1 2 3) से उत्पन्न किया जा सकता है, जैसा कि निम्नलिखित समीकरणों के दाहिने हाथ से दिखाया गया है (संरचना बाएं से दाएं है):
* अन्य हाथों पर<sub>n</sub>, डिग्री n का [[सममित समूह]], n > 2 होने पर किसी एक तत्व द्वारा उत्पन्न नहीं होता है (चक्रीय_समूह नहीं है)। हालाँकि, इन मामलों में S<sub>n</sub> हमेशा दो क्रमपरिवर्तनों द्वारा उत्पन्न किया जा सकता है जो कि Permutation#Cycle_notation में (1 2) और के रूप में लिखे गए हैं {{math|1=(1&nbsp;2&nbsp;3&nbsp;...&nbsp;''n'')}}. उदाहरण के लिए, S के 6 तत्व<sub>3</sub> दो जनरेटरों, (1 2) और (1 2 3) से उत्पन्न किया जा सकता है, जैसा कि निम्नलिखित समीकरणों के दाहिने हाथ से दिखाया गया है (संरचना बाएं से दाएं है):
:ई = (1 2)(1 2)
:ई = (1 2)(1 2)

Revision as of 02:25, 12 July 2023

सम्मिश्र तल में एकता की 5वीं जड़ें गुणन के अंतर्गत एक समूह बनाती हैं। प्रत्येक गैर-पहचान तत्व समूह उत्पन्न करता है।

अमूर्त बीजगणित में, किसी समूह एक उत्पादक सेट समूह सेट का एक उपसमुच्चय होता है, जैसे कि समूह के प्रत्येक तत्व को उपसमुच्चय के कई तत्वों और उनके व्युत्क्रमों के संयोजन (समूह संचालन के तहत) के रूप में व्यक्त किया जा सकता है।

दूसरे शब्दों में, यदि समूह का एक उपसमूह है, तो , द्वारा उत्पन्न उपसमूह, का सबसे छोटा उपसमूह है, का सबसे छोटा उपसमूह है, जो के तत्वों वाले सभी उपसमूहों के प्रतिच्छेदन के बराबर है; समान रूप से, के सभी तत्वों का उपसमूह है जिसे में तत्वों और व्युत्क्रमों के परिमित उत्पाद के रूप में व्यक्त किया जा सकता है। (ध्यान दें कि व्युत्क्रम की आवश्यकता केवल तभी होती है जब समूह अनंत हो; एक सीमित समूह में, किसी तत्व के व्युत्क्रम को उस तत्व की घात के रूप में व्यक्त किया जा सकता है।)

यदि , तो हम ऐसा कहते हैं , उत्पन्न करता है, और के तत्वों को जनरेटर या समूह जनरेटर कहा जाता है। यदि तो, खाली सेट है, तो नगण्य समूह है, क्योंकि हम खाली उत्पाद को पहचान मानते हैं।

जब में केवल एक तत्व होता है, तो को प्रायः के रूप में लिखा जाता है। इस मामले में, एक चक्रीय समूह, , की घातों का चक्रीय उपसमूह है, और हम कहते हैं कि यह समूह किसके द्वारा उत्पन्न होता है। यह कहने के बराबर है कि एक तत्व एक समूह उत्पन्न करता है, यह कह रहा है कि यह संपूर्ण समूह के बराबर है। परिमित समूहों के लिए, यह भी ऐसा कहने के बराबर है कि का क्रम है।

एक समूह को अनंत संख्या में जनरेटर की आवश्यकता हो सकती है। उदाहरण के लिए परिमेय संख्याओं का योगात्मक समूह परिमित रूप से उत्पन्न नहीं होता है। यह सभी पूर्णांकों के व्युत्क्रमों द्वारा उत्पन्न होता है, लेकिन इन जनरेटरों की किसी भी सीमित संख्या को जनरेटिंग सेट से हटाए बिना जनरेटिंग सेट से हटाया जा सकता है। इस तरह के मामले में, जनरेटिंग सेट के सभी तत्व फिर भी "गैर-जेनरेटिंग तत्व" हैं, जैसा कि वास्तव में पूरे समूह के सभी तत्व हैं - नीचे फ्रैटिनी उपसमूह देखें।

यदि एक टोपोलॉजिकल समूह है तो के उपसमुच्चय को टोपोलॉजिकल जनरेटर का एक सेट कहा जाता है यदि में सघन सेट है,अर्थात का समापन संपूर्ण समूह है।

अंततः उत्पन्न समूह

यदि परिमित है, तो समूह को परिमित रूप से उत्पन्न कहा जाता है। विशेष रूप से अंतिम रूप से उत्पन्न एबेलियन समूहों की संरचना का आसानी से वर्णन किया गया है। कई प्रमेय जो अंतिम रूप से उत्पन्न समूहों के लिए सत्य हैं, सामान्यतः समूहों के लिए विफल हो जाते हैं। यह सिद्ध हो चुका है कि यदि एक उपसमुच्चय द्वारा एक परिमित समूह उत्पन्न होता है, तो प्रत्येक समूह तत्व को समूह के क्रम से कम या उसके बराबर लंबाई वाले वर्णमाला के एक शब्द के रूप में व्यक्त किया जा सकता है।

प्रत्येक परिमित समूह के बाद से परिमित रूप से उत्पन्न होता है। जोड़ के अंतर्गत पूर्णांक एक अनंत समूह का उदाहरण है जो 1 और -1 दोनों द्वारा परिमित रूप से उत्पन्न होता है, लेकिन योग के तहत परिमेय संख्या का समूह परिमित रूप से उत्पन्न नहीं किया जा सकता है। कोई भी असंख्य समूह परिमित रूप से उत्पन्न नहीं किया जा सकता। उदाहरण के लिए, जोड़ के अंतर्गत वास्तविक संख्याओं का समूह, है।

एक ही समूह के विभिन्न उपसमुच्चय, उपसमुच्चय उत्पन्न कर सकते हैं। उदाहरण के लिए, यदि और gcd(pq) = 1 के साथ पूर्णांक हैं, तो बेज़आउट की पहचान द्वारा जोड़ के तहत पूर्णांकों का समूह भी उत्पन्न करता है।

हालांकि यह सच है कि एक परिमित रूप से उत्पन्न समूह का प्रत्येक भागफल परिमित रूप से उत्पन्न होता है (भागफल में जनरेटर की छवियां एक परिमित उत्पन्न करने वाला सेट देती हैं), एक परिमित रूप से उत्पन्न समूह के एक उपसमूह को परिमित रूप से उत्पन्न करने की आवश्यकता नहीं होती है। उदाहरण के लिए, मान लीजिए कि दो जनरेटरों, और में मुक्त समूह है, (जो स्पष्ट रूप से सीमित रूप से उत्पन्न होता है, क्योंकि ), और मान लीजिए कि किसी प्राकृतिक संख्या के लिए रूप के के सभी तत्वों से युक्त उपसमुच्चय है। अनगिनत जनरेटरों में मुक्त समूह के लिए समरूपी है, और इसलिए इसे अंतिम रूप से उत्पन्न नहीं किया जा सकता है। हालाँकि, एक सीमित रूप से उत्पन्न एबेलियन समूह का प्रत्येक उपसमूह अपने आप में एक सीमित रूप से उत्पन्न होता है। वास्तव में, और अधिक कहा जा सकता है: सभी अंतिम रूप से उत्पन्न समूहों का वर्ग एक्सटेंशन के तहत बंद है। इसे देखने के लिए, (अंततः उत्पन्न) सामान्य उपसमूह और भागफल के लिए एक जनरेटिंग सेट लें। फिर सामान्य उपसमूह के लिए जेनरेटर, भागफल के लिए जेनरेटर की पूर्वछवियों के साथ मिलकर, समूह उत्पन्न करते हैं।

उदाहरण

  • पूर्णांकों का गुणक समूह मॉड्यूलो 9, U9 = {1, 2, 4, 5, 7, 8}, गुणन के अंतर्गत 9 तक के सभी पूर्णांकों का समूह है mod 9. ध्यान दें कि 7 का जनरेटर नहीं है U9, चूँकि

    जबकि 2 है, चूँकि
  • अन्य हाथों परn, डिग्री n का सममित समूह, n > 2 होने पर किसी एक तत्व द्वारा उत्पन्न नहीं होता है (चक्रीय_समूह नहीं है)। हालाँकि, इन मामलों में Sn हमेशा दो क्रमपरिवर्तनों द्वारा उत्पन्न किया जा सकता है जो कि Permutation#Cycle_notation में (1 2) और के रूप में लिखे गए हैं (1 2 3 ... n). उदाहरण के लिए, S के 6 तत्व3 दो जनरेटरों, (1 2) और (1 2 3) से उत्पन्न किया जा सकता है, जैसा कि निम्नलिखित समीकरणों के दाहिने हाथ से दिखाया गया है (संरचना बाएं से दाएं है):
ई = (1 2)(1 2)
(1 2) = (1 2)
(1 3) = (1 2)(1 2 3)
(2 3) = (1 2 3)(1 2)
(1 2 3) = (1 2 3)
(1 3 2) = (1 2)(1 2 3)(1 2)
  • अनंत समूहों में परिमित जनरेटिंग सेट भी हो सकते हैं। पूर्णांकों के योगात्मक समूह में जनरेटिंग सेट के रूप में 1 होता है। तत्व 2 एक जनरेटिंग सेट नहीं है, क्योंकि विषम संख्याएँ गायब होंगी। दो-तत्व उपसमुच्चय {3, 5} चूंकि एक जनरेटिंग सेट है (−5) + 3 + 3 = 1 (वास्तव में, कोप्राइम पूर्णांक संख्याओं का कोई भी जोड़ा, बेज़आउट की पहचान के परिणाम के रूप में है)।
  • बहुभुज|एन-गोन का डायहेड्रल समूह (जिसमें ऑर्डर_(समूह_सिद्धांत) है) 2n) सेट द्वारा उत्पन्न होता है {r, s}, कहाँ r द्वारा घूर्णन का प्रतिनिधित्व करता है 2π/n और s समरूपता की रेखा पर कोई प्रतिबिंब है।[1]
  • क्रम का चक्रीय समूह , , और यह वेंएकता की जड़ें सभी एक ही तत्व द्वारा उत्पन्न होती हैं (वास्तव में, ये समूह एक दूसरे के लिए समूह समरूपता हैं)।[2]
  • किसी समूह की प्रस्तुति को जेनरेटर के एक सेट और उनके बीच संबंधों के संग्रह के रूप में परिभाषित किया गया है, इसलिए उस पृष्ठ पर सूचीबद्ध किसी भी उदाहरण में जेनरेटर सेट के उदाहरण शामिल हैं।[3]


मुक्त समूह

किसी समुच्चय द्वारा उत्पन्न सबसे सामान्य समूह द्वारा समूह मुक्त समूह है . प्रत्येक समूह द्वारा उत्पन्न इस समूह के भागफल समूह के लिए समरूपी है, एक विशेषता जिसका उपयोग किसी समूह की किसी समूह की प्रस्तुति की अभिव्यक्ति में किया जाता है।

फ्रैटिनी उपसमूह

एक दिलचस्प साथी विषय गैर-जनरेटर का है। तत्व समूह का यदि प्रत्येक सेट एक गैर-जनरेटर है युक्त जो उत्पन्न करता है , अभी भी उत्पन्न करता है कब से हटा दिया गया है . योग के साथ पूर्णांकों में, एकमात्र गैर-जनरेटर 0 है। सभी गैर-जनरेटर का सेट एक उपसमूह बनाता है , फ्रैटिनी उपसमूह।

अर्धसमूह और मोनोइड

अगर एक अर्धसमूह या एक मोनोइड है, फिर भी कोई जनरेटिंग सेट की धारणा का उपयोग कर सकता है का . का एक सेमीग्रुप/मोनॉइड जनरेटिंग सेट है अगर सबसे छोटा अर्धसमूह/मोनॉइड युक्त है .

ऊपर दिए गए परिमित योगों का उपयोग करके किसी समूह के सेट को उत्पन्न करने की परिभाषाओं को थोड़ा संशोधित किया जाना चाहिए जब कोई अर्धसमूह या मोनोइड से निपटता है। वास्तव में, इस परिभाषा में अब व्युत्क्रम संक्रिया की धारणा का उपयोग नहीं किया जाना चाहिए। सेट का एक अर्धसमूह उत्पन्न करने वाला सेट कहा जाता है यदि प्रत्येक तत्व के तत्वों का एक सीमित योग है . इसी प्रकार, एक सेट का एक मोनोइड जनरेटिंग सेट कहा जाता है यदि प्रत्येक गैर-शून्य तत्व के तत्वों का एक सीमित योग है .

उदाहरण के लिए, {1} प्राकृतिक संख्याओं के सेट का एक मोनॉइड जनरेटर है . समुच्चय {1} सकारात्मक प्राकृतिक संख्याओं का एक अर्धसमूह जनरेटर भी है . हालाँकि, पूर्णांक 0 को 1s के (गैर-रिक्त) योग के रूप में व्यक्त नहीं किया जा सकता है, इस प्रकार {1} प्राकृतिक संख्याओं का अर्धसमूह जनरेटर नहीं है।

इसी प्रकार, जबकि {1} पूर्णांकों के सेट का एक समूह जनरेटर है , {1} पूर्णांकों के समुच्चय का मोनॉइड जनरेटर नहीं है। दरअसल, पूर्णांक -1 को 1s के सीमित योग के रूप में व्यक्त नहीं किया जा सकता है।

यह भी देखें

टिप्पणियाँ

  1. Dummit, David S.; Foote, Richard M. (2004). सार बीजगणित (3rd ed.). Wiley. p. 25. ISBN 9780471452348. OCLC 248917264.
  2. Dummit & Foote 2004, p. 54
  3. Dummit & Foote 2004, p. 26


संदर्भ


बाहरी संबंध